Capacity of overhead lines

Wires of the same straight line, parallel to each other and with the earth surface.

Catenary $(\cosh x)$ replaced by a straight line through the centre of gravity:
$\mathrm{h}=\mathrm{H}-0,7 \mathrm{p} \quad(\mathrm{m})$
H...suspension height
p...sag
h...calculation height

El. potential at point P in the system of n parallel conductors $\left(\mathrm{d}_{\mathrm{kk}} \ll 1\right)$ and ground with zero potential - mirror method

$$
\hat{\mathrm{U}}_{\mathrm{P}}=\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\hat{\mathrm{U}}_{\mathrm{Pk}}+\hat{\mathrm{U}}_{\mathrm{Pk}}\right)=\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\hat{\mathrm{Q}}_{\mathrm{k}}}{2 \pi \varepsilon} \ln \frac{\mathrm{~d}_{\mathrm{Pk}}}{\mathrm{~d}_{\mathrm{Pk}}} \quad(\mathrm{~V} ; \mathrm{C} / \mathrm{m}, \mathrm{~m}, \mathrm{~m})
$$

Point P on the surface of the real wire $k\left(\mathrm{r}_{\mathrm{k}} \ll \mathrm{d}_{\mathrm{km}}\right)$:

$$
\begin{aligned}
& \hat{\mathrm{U}}_{\mathrm{k}}=\sum_{\mathrm{m}=1}^{\mathrm{n}} \frac{\hat{\mathrm{Q}}_{\mathrm{m}}}{2 \pi \varepsilon} \ln \frac{\mathrm{~d}_{\mathrm{km}}}{\mathrm{~d}_{\mathrm{km}}}=\sum_{\mathrm{m}=1}^{\mathrm{n}} \delta_{\mathrm{mk}} \hat{\mathrm{Q}}_{\mathrm{m}} \\
& \left(\mathrm{~d}_{\mathrm{kk}}=\mathrm{r}_{\mathrm{k}} ; \mathrm{d}_{\mathrm{kk}}=2 \mathrm{~h}_{\mathrm{k}}\right)
\end{aligned}
$$

Point on the ground

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{Zk}}=\mathrm{d}_{\mathrm{Zk}} \\
& \hat{\mathrm{U}}_{\mathrm{Z}}=\sum_{\mathrm{m}=1}^{\mathrm{n}} \frac{\hat{\mathrm{Q}}_{\mathrm{m}}}{2 \pi \varepsilon} \ln \frac{\mathrm{~d}_{\mathrm{Zm}^{\prime}}}{\mathrm{d}_{\mathrm{Zm}}}=\sum_{\mathrm{m}=1}^{\mathrm{n}} \frac{\hat{\mathrm{Q}}_{\mathrm{m}}}{2 \pi \varepsilon} \ln 1=0
\end{aligned}
$$

Self potential coefficient of the wire $k(\mathrm{~m}=\mathrm{k})$

$$
\delta_{\mathrm{kk}}=\frac{1}{2 \pi \varepsilon} \ln \frac{2 \mathrm{~h}_{\mathrm{k}}}{\mathrm{r}_{\mathrm{k}}}(\mathrm{~m} / \mathrm{F} ; \mathrm{F} / \mathrm{m}, \mathrm{~m}, \mathrm{~m})
$$

The mutual potential coefficient ($\mathrm{m} \neq \mathrm{k}$)

$$
\begin{gathered}
\delta_{\mathrm{km}}=\delta_{\mathrm{mk}}=\frac{1}{2 \pi \varepsilon} \ln \frac{\mathrm{~d}_{\mathrm{k} \mathrm{~m}^{\prime}}}{\mathrm{d}_{\mathrm{km}}} \quad(\mathrm{~m} / \mathrm{F} ; \mathrm{F} / \mathrm{m}, \mathrm{~m}, \mathrm{~m}) \\
\mathrm{d}_{\mathrm{km}}= \\
=\sqrt{\left(\mathrm{h}_{\mathrm{k}}+\mathrm{h}_{\mathrm{m}}\right)^{2}+\mathrm{d}_{\mathrm{km}}^{2}-\left(\mathrm{h}_{\mathrm{m}}-\mathrm{h}_{\mathrm{k}}\right)^{2}} \\
\delta_{\mathrm{km}}=\delta_{\mathrm{mk}}=\frac{1}{2 \pi \varepsilon} \ln \frac{\sqrt{4 \mathrm{~h}_{\mathrm{k}} \mathrm{~h}_{\mathrm{m}}+\mathrm{d}_{\mathrm{km}}^{2}}}{\mathrm{~d}_{\mathrm{km}}}
\end{gathered}
$$

Modified

$$
\begin{aligned}
& \varepsilon_{0}=8,854 \cdot 10^{-12} \approx \frac{10^{-9}}{36 \pi} \mathrm{~F} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=1 ; \ln \mathrm{x}=2,3 \log \mathrm{x} \\
& \Rightarrow \delta_{\mathrm{kk}}=\frac{1}{0,0242} \log \frac{2 \mathrm{~h}_{\mathrm{k}}}{\mathrm{r}_{\mathrm{k}}}(\mathrm{~km} / \mu \mathrm{F})
\end{aligned}
$$

$$
\delta_{\mathrm{km}}=\frac{1}{0,0242} \log \frac{\sqrt{4 \mathrm{~h}_{\mathrm{k}} \mathrm{~h}_{\mathrm{m}}+\mathrm{d}_{\mathrm{km}}^{2}}}{\mathrm{~d}_{\mathrm{km}}}(\mathrm{~km} / \mu \mathrm{F})
$$

Matrix

$$
(\hat{U})=\left(\delta_{\delta_{m m}}\right)(\hat{\mathrm{Q}})
$$

A simple three-phase line without ground wires

Partial capacity to the ground: $\mathrm{k}_{\mathrm{x} 0}$ Partial mutual capacity: k_{xy}
Symmetrical voltage

$$
\hat{U}_{a}=\hat{U}_{a} \quad \hat{U}_{b}=\hat{a}^{2} \hat{U}_{a} \quad \hat{U}_{c}=\hat{a}_{a}
$$

Charges of the individual wires

$$
\begin{aligned}
& \hat{\mathrm{Q}}_{\mathrm{a}}=\mathrm{k}_{\mathrm{a} 0} \hat{\mathrm{U}}_{\mathrm{a}}+\mathrm{k}_{\mathrm{ab}}\left(\hat{\mathrm{U}}_{\mathrm{a}}-\hat{\mathrm{U}}_{\mathrm{b}}\right)+\mathrm{k}_{\mathrm{ac}}\left(\hat{\mathrm{U}}_{\mathrm{a}}-\hat{\mathrm{U}}_{\mathrm{c}}\right) \\
& \hat{\mathrm{Q}}_{\mathrm{b}}=\mathrm{k}_{\mathrm{b} 0} \hat{\mathrm{U}}_{\mathrm{b}}+\mathrm{k}_{\mathrm{ab}}\left(\hat{\mathrm{U}}_{\mathrm{b}}-\hat{\mathrm{U}}_{\mathrm{a}}\right)+\mathrm{k}_{\mathrm{bc}}\left(\hat{\mathrm{U}}_{\mathrm{b}}-\hat{\mathrm{U}}_{\mathrm{c}}\right) \\
& \hat{\mathrm{Q}}_{\mathrm{c}}=\mathrm{k}_{\mathrm{c} 0} \hat{\mathrm{U}}_{\mathrm{c}}+\mathrm{k}_{\mathrm{ac}}\left(\hat{\mathrm{U}}_{\mathrm{c}}-\hat{\mathrm{U}}_{\mathrm{a}}\right)+\mathrm{k}_{\mathrm{bc}}\left(\hat{\mathrm{U}}_{\mathrm{c}}-\hat{\mathrm{U}}_{\mathrm{b}}\right)
\end{aligned}
$$

Modified

$$
\hat{\mathrm{Q}}_{\mathrm{a}}=\left(\mathrm{k}_{\mathrm{a} 0}+\mathrm{k}_{\mathrm{ab}}+\mathrm{k}_{\mathrm{ac}}\right) \hat{\mathrm{U}}_{\mathrm{a}}-\mathrm{k}_{\mathrm{ab}} \hat{\mathrm{U}}_{\mathrm{b}}-\mathrm{k}_{\mathrm{ac}} \hat{\mathrm{U}}_{\mathrm{c}}
$$

$$
\hat{\mathrm{Q}}_{\mathrm{b}}=-\mathrm{k}_{\mathrm{ab}} \hat{\mathrm{U}}_{\mathrm{a}}+\left(\mathrm{k}_{\mathrm{b} 0}+\mathrm{k}_{\mathrm{ab}}+\mathrm{k}_{\mathrm{bc}}\right) \hat{\mathrm{U}}_{\mathrm{b}}-\mathrm{k}_{\mathrm{bc}} \hat{\mathrm{U}}_{\mathrm{c}}
$$

$$
\hat{\mathrm{Q}}_{\mathrm{c}}=-\mathrm{k}_{\mathrm{ac}} \hat{\mathrm{U}}_{\mathrm{a}}-\mathrm{k}_{\mathrm{bc}} \hat{\mathrm{U}}_{\mathrm{b}}+\left(\mathrm{k}_{\mathrm{c} 0}+\mathrm{k}_{\mathrm{ac}}+\mathrm{k}_{\mathrm{bc}}\right) \hat{\mathrm{U}}_{\mathrm{c}}
$$

The introduction of capacity coefficients

$$
\begin{aligned}
& \hat{Q}_{\mathrm{a}}=\mathrm{c}_{\mathrm{aa}} \hat{\mathrm{U}}_{\mathrm{a}}+\mathrm{c}_{\mathrm{ab}} \hat{\mathrm{U}}_{\mathrm{b}}+\mathrm{c}_{\mathrm{ac}} \hat{\mathrm{U}}_{\mathrm{c}} \\
& \hat{\mathrm{Q}}_{\mathrm{b}}=\mathrm{c}_{\mathrm{ab}} \hat{\mathrm{U}}_{\mathrm{a}}+\mathrm{c}_{\mathrm{bb}} \hat{\mathrm{U}}_{\mathrm{b}}+\mathrm{c}_{\mathrm{bc}} \hat{\mathrm{U}}_{\mathrm{c}} \\
& \hat{\mathrm{Q}}_{\mathrm{c}}=\mathrm{c}_{\mathrm{ac}} \hat{\mathrm{U}}_{\mathrm{a}}+\mathrm{c}_{\mathrm{bc}} \mathrm{U}_{\mathrm{b}}+\mathrm{c}_{\mathrm{cc}} \hat{U}_{\mathrm{c}}
\end{aligned}
$$

Matrix

$$
\begin{aligned}
& (\hat{\mathrm{Q}})=\left(\mathrm{c}_{\mathrm{km}}\right)(\hat{\mathrm{U}}) \\
& (\hat{\mathrm{Q}})=\left(\delta_{\mathrm{km}}\right)^{-1}(\hat{\mathrm{U}}) \quad \Rightarrow\left(\mathrm{c}_{\mathrm{km}}\right)=\left(\delta_{\mathrm{km}}\right)^{-1}
\end{aligned}
$$

Calculation procedure:
geometry $\rightarrow\left(\delta_{\mathrm{km}}\right) \rightarrow\left(\mathrm{c}_{\mathrm{km}}\right) \rightarrow$ capacity

$$
\begin{array}{ll}
\mathrm{m}=\mathrm{k}: & \mathrm{k}_{\mathrm{k} 0}=\sum_{\mathrm{m}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{km}} \\
\mathrm{~m} \neq \mathrm{k}: & \mathrm{k}_{\mathrm{km}}=-\mathrm{c}_{\mathrm{km}}
\end{array}
$$

Operational capacity - the $k^{\text {th }}$ conductor alone has the same charge as in the system of n conductors

$$
\hat{\mathrm{C}}_{\mathrm{k}}=\frac{\hat{\mathrm{Q}}_{\mathrm{k}}}{\hat{\mathrm{U}}_{\mathrm{k}}}=\frac{\mathrm{k}_{\mathrm{k} 0} \hat{\mathrm{U}}_{\mathrm{k}}+\sum_{\mathrm{m}=1, \mathrm{~m} \neq \mathrm{k}}^{\mathrm{n}} \mathrm{k}_{\mathrm{k}}\left(\hat{\mathrm{U}}_{\mathrm{k}}-\hat{\mathrm{U}}_{\mathrm{m}}\right)}{\hat{\mathrm{U}}_{\mathrm{k}}}
$$

$$
\begin{aligned}
& \hat{\mathrm{C}}_{\mathrm{a}}=\frac{\left(\mathrm{k}_{\mathrm{a} 0}+\mathrm{k}_{\mathrm{ab}}+\mathrm{k}_{\mathrm{ac}}\right) \hat{\mathrm{U}}_{\mathrm{a}}-\mathrm{k}_{\mathrm{ab}} \hat{\mathrm{U}}_{\mathrm{b}}-\mathrm{k}_{\mathrm{ac}} \hat{\mathrm{U}}_{\mathrm{c}}}{\hat{\mathrm{U}}_{\mathrm{a}}} \\
& \hat{\mathrm{C}}_{\mathrm{b}}=\frac{-\mathrm{k}_{\mathrm{ab}} \hat{\mathrm{U}}_{\mathrm{a}}+\left(\mathrm{k}_{\mathrm{b} 0}+\mathrm{k}_{\mathrm{ab}}+\mathrm{k}_{\mathrm{bc}}\right) \hat{\mathrm{U}}_{\mathrm{b}}-\mathrm{k}_{\mathrm{bc}} \hat{\mathrm{U}}_{\mathrm{c}}}{\hat{\mathrm{U}}_{\mathrm{b}}} \\
& \hat{\mathrm{C}}_{\mathrm{c}}=\frac{-\mathrm{k}_{\mathrm{ac}} \hat{\mathrm{U}}_{\mathrm{a}}-\mathrm{k}_{\mathrm{bc}} \hat{\mathrm{U}}_{\mathrm{b}}+\left(\mathrm{k}_{\mathrm{c} 0}+\mathrm{k}_{\mathrm{ac}}+\mathrm{k}_{\mathrm{bc}}\right) \hat{\mathrm{U}}_{\mathrm{c}}}{\hat{\mathrm{U}}_{\mathrm{c}}}
\end{aligned}
$$

Generally

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{a} 0} \neq \mathrm{k}_{\mathrm{b} 0} \neq \mathrm{k}_{\mathrm{c} 0} \\
& \mathrm{k}_{\mathrm{ab}} \neq \mathrm{k}_{\mathrm{bc}} \neq \mathrm{k}_{\mathrm{ac}} \\
& \hat{\mathrm{C}}_{\mathrm{a}} \neq \hat{\mathrm{C}}_{\mathrm{b}} \neq \hat{\mathrm{C}}_{\mathrm{c}}
\end{aligned}
$$

\rightarrow current unbalance $\left(\hat{\mathrm{I}}_{\mathrm{kc}}=\mathrm{j} \omega \hat{\mathrm{Q}}_{\mathrm{k}}\right) \rightarrow$ transposition

Transposed lines

The potential coefficients matrix

$$
\left(\delta_{\mathrm{km}}\right)=\frac{1}{3}\left\{\left(\begin{array}{lll}
\delta_{11} & \delta_{12} & \delta_{13} \\
\delta_{12} & \delta_{22} & \delta_{23} \\
\delta_{13} & \delta_{23} & \delta_{33}
\end{array}\right)+\left(\begin{array}{lll}
\delta_{33} & \delta_{13} & \delta_{23} \\
\delta_{13} & \delta_{11} & \delta_{12} \\
\delta_{23} & \delta_{12} & \delta_{22}
\end{array}\right)+\left(\begin{array}{lll}
\delta_{22} & \delta_{23} & \delta_{12} \\
\delta_{23} & \delta_{33} & \delta_{13} \\
\delta_{12} & \delta_{13} & \delta_{11}
\end{array}\right)\right\}
$$

Let's introduce

$$
\begin{aligned}
\delta= & \frac{1}{3}\left(\delta_{11}+\delta_{22}+\delta_{33}\right) \\
\delta= & \frac{1}{0,0242} \log \frac{2 \mathrm{~h}}{\mathrm{r}}(\mathrm{~km} / \mu \mathrm{F}) \\
& \text { mean geometrical height } \\
& \mathrm{h}=\sqrt[3]{\mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{~h}_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \delta^{\prime}=\frac{1}{3}\left(\delta_{12}+\delta_{13}+\delta_{23}\right) \\
& \delta^{\prime}=\frac{1}{0,0242} \log \frac{\sqrt{4 h^{2}+\mathrm{d}^{2}}}{\mathrm{~d}}(\mathrm{~km} / \mu \mathrm{F}) \\
& d=\sqrt[3]{\mathrm{d}_{12} \mathrm{~d}_{13} \mathrm{~d}_{23}}
\end{aligned}
$$

Then

$$
\left(\begin{array}{l}
\hat{\mathrm{U}}_{\mathrm{a}} \\
\hat{\mathrm{U}}_{\mathrm{b}} \\
\hat{\mathrm{U}}_{\mathrm{c}}
\end{array}\right)=\left(\begin{array}{ccc}
\delta & \delta^{\prime} & \delta^{\prime} \\
\delta^{\prime} & \delta & \delta^{\prime} \\
\delta^{\prime} & \delta^{\prime} & \delta
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{Q}}_{\mathrm{a}} \\
\hat{\mathrm{Q}}_{\mathrm{b}} \\
\hat{\mathrm{Q}}_{\mathrm{c}}
\end{array}\right)
$$

The diagrams include only 2 capacities

$$
\begin{aligned}
& \mathrm{k}_{0}=\mathrm{k}_{\mathrm{a} 0}=\mathrm{k}_{\mathrm{b} 0}=\mathrm{k}_{\mathrm{c} 0} \\
& \mathrm{k}^{\prime}=\mathrm{k}_{\mathrm{ab}}=\mathrm{k}_{\mathrm{bc}}=\mathrm{k}_{\mathrm{ac}}
\end{aligned}
$$

For the charges

$$
\left(\begin{array}{c}
\hat{\mathrm{Q}}_{\mathrm{a}} \\
\hat{\mathrm{Q}}_{\mathrm{b}} \\
\hat{\mathrm{Q}}_{\mathrm{c}}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{k}_{0}+2 \mathrm{k}^{\prime} & -\mathrm{k}^{\prime} & -\mathrm{k}^{\prime} \\
-\mathrm{k}^{\prime} & \mathrm{k}_{0}+2 \mathrm{k}^{\prime} & -\mathrm{k}^{\prime} \\
-\mathrm{k}^{\prime} & -\mathrm{k}^{\prime} & \mathrm{k}_{0}+2 \mathrm{k}^{\prime}
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{U}}_{\mathrm{a}} \\
\hat{\mathrm{U}}_{\mathrm{b}} \\
\hat{\mathrm{U}}_{\mathrm{c}}
\end{array}\right)
$$

Solution:
Capacity to the ground

$$
\mathrm{k}_{0}=\frac{1}{\delta+2 \delta^{\prime}}
$$

Capacity between conductors

$$
\mathrm{k}^{\prime}=\frac{\delta^{\prime}}{\left(\delta+2 \delta^{\prime}\right) \cdot\left(\delta-\delta^{\prime}\right)}
$$

Operational capacity (real number)

$$
\mathrm{C}=\mathrm{C}_{\mathrm{a}}=\mathrm{C}_{\mathrm{b}}=\mathrm{C}_{\mathrm{c}}=\mathrm{k}_{0}+3 \mathrm{k}^{\prime}
$$

$$
\mathrm{C}=\frac{1}{\delta-\delta^{\prime}}
$$

$$
\mathrm{C}=\frac{0,0242}{\log \frac{2 \mathrm{hd}}{\mathrm{r} \sqrt{4 \mathrm{~h}^{2}+\mathrm{d}^{2}}}}(\mu \mathrm{~F} / \mathrm{km})
$$

Influence of ground wires: $\quad \mathrm{k}_{0}$ increase, k^{\prime} decrease, C no change Influence of metal towers: $\quad k_{0}$ increase (by 3-6\%)

Values:

- $400 \mathrm{kV} \mathrm{-} \mathrm{~B}_{1} \approx(3,5 \div 4,5) \mu \mathrm{S} \cdot \mathrm{km}^{-1}$
- $110,220 \mathrm{kV}-\mathrm{B}_{1} \approx(2,5 \div 3) \mu \mathrm{S} \cdot \mathrm{km}^{-1}$
- $22 \mathrm{kV}-\mathrm{B}_{1} \approx 1,4 \mu \mathrm{~S} \cdot \mathrm{~km}^{-1}$

Conductance is negligible in relation to capacities.

Double power lines with two ground wires

In blocks

$$
\begin{aligned}
& \left(\hat{\mathrm{U}}_{\mathrm{v}}\right)=\left(\delta_{\mathrm{vv}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)+\left(\delta_{\mathrm{vv}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)+\left(\delta_{\mathrm{vz}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{z}}\right) \\
& \left(\hat{\mathrm{U}}_{\mathrm{v}}\right)=\left(\delta_{\mathrm{Vv}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)+\left(\delta_{\mathrm{vv}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)+\left(\delta_{\mathrm{vz}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{z}}\right) \\
& 0=\left(\hat{\mathrm{U}}_{\mathrm{z}}\right)=\left(\delta_{\mathrm{zv}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)+\left(\delta_{\mathrm{zv}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)+\left(\delta_{\mathrm{zz}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{z}}\right)
\end{aligned}
$$

We can calculate again with the modified power line without ground wires (for impedances transfer to symmetrical components system)

$$
\left(\hat{\mathrm{Q}}_{\mathrm{z}}\right)=-\left(\delta_{\mathrm{zz}}\right)^{-1}\left[\left(\delta_{\mathrm{zv}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)+\left(\delta_{\mathrm{zv}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)\right]
$$

Operational states calculation

- power line A, B, C no-load state

$$
\begin{aligned}
& \left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)=0 \\
& \left(\hat{U}_{\mathrm{v}}\right)=\left(\delta_{\mathrm{vv}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)+\left(\delta_{\mathrm{vz}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{z}}\right) \\
& \left(\hat{\mathrm{U}}_{\mathrm{v}}\right)=\left(\delta_{\mathrm{v}}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)+\left(\delta_{\mathrm{vz}}\right)\left(\hat{\mathrm{Q}}_{z}\right) \\
& \rightarrow\left(\hat{\mathrm{Q}}_{z}\right)=-\left(\delta_{z z}\right)^{-1}\left(\delta_{z v}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)
\end{aligned}
$$

Modified

$$
\begin{aligned}
& \left(\hat{U}_{\mathrm{v}}\right)=\left[\left(\delta_{\mathrm{vv}}\right)-\left(\delta_{\mathrm{vz}}\right)\left(\delta_{\mathrm{zz}}\right)^{-1}\left(\delta_{\mathrm{zv}}\right)\right]\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)=\left(\delta_{\mathrm{k} 1}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right) \\
& \left(\hat{\mathrm{U}}_{\mathrm{v}}\right)=\left[\left(\delta_{\mathrm{vv}}\right)-\left(\delta_{\mathrm{v} z}\right)\left(\delta_{\mathrm{zz}}\right)^{-1}\left(\delta_{\mathrm{zv}}\right)\right]\left[\hat{\mathrm{Q}}_{\mathrm{v}}\right)=\left(\delta_{\mathrm{k} 2}\right)\left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)
\end{aligned}
$$

Voltages induced on the no-load lines by capacitive couplings

$$
\begin{aligned}
& \left(\hat{\mathrm{Q}}_{\mathrm{v}}\right)=\left(\delta_{\mathrm{k} 1}\right)^{-1}\left(\hat{\mathrm{U}}_{\mathrm{v}}\right) \\
& \left(\hat{\mathrm{U}}_{\mathrm{v}}\right)=\left(\delta_{\mathrm{k} 2}\right)\left(\delta_{\mathrm{k} 1}\right)^{-1}\left(\hat{\mathrm{U}}_{\mathrm{v}}\right)
\end{aligned}
$$

Currents flowing to the ground wires through capacitive couplings

$$
\left(\hat{\mathrm{I}}_{\mathrm{zc}}\right)=\mathrm{j} \omega\left(\hat{\mathrm{Q}}_{\mathrm{z}}\right)=-\left(\delta_{\mathrm{zz}}\right)^{-1}\left(\delta_{\mathrm{zv}}\right)\left(\delta_{\mathrm{k} 1}\right)^{-1}\left(\hat{\mathrm{U}}_{\mathrm{v}}\right)
$$

Electrical parameters of cables

Resistance

The same as for overhead lines.
Single-core - R increased due to eddy currents and hysteresis losses in the metal case (screen).

Inductance

Three-core - the same as for transposed power lines.

$$
\mathrm{L}_{1}=0,46 \log \frac{\mathrm{~d}}{\xi \mathrm{r}} \quad(\mathrm{mH} / \mathrm{km})
$$

Not valid $\mathrm{d} \gg \mathrm{r} \rightarrow \mathrm{L}$ values less precise but technically applicable.
$6 \mathrm{kV} \quad \mathrm{X} \sim 0,06 \Omega / \mathrm{km} \quad \mathrm{X}_{0} \approx \mathrm{X}_{1}$ for three-core
$22 \mathrm{kV} \quad \mathrm{X} \sim 0,1 \Omega / \mathrm{km} \quad \mathrm{X}_{0} \approx 3 \mathrm{X}_{1}$ for single-core

Conductance

Determined by dielectric losses.
3 phase

$$
\begin{aligned}
& P_{d}=3 U_{f} \mathrm{I}_{\check{\mathrm{c}}}=3 \mathrm{U}_{\mathrm{f}} \mathrm{I}_{\mathrm{j}} \operatorname{tg} \delta \quad(\mathrm{~W}) \\
& \mathrm{P}_{\mathrm{d}}=3 \mathrm{U}_{\mathrm{f}} \omega \mathrm{CU} \mathrm{U}_{\mathrm{f}} \operatorname{tg} \delta=\omega \mathrm{CU}^{2} \operatorname{tg} \delta=\mathrm{Q}_{\mathrm{c}} \operatorname{tg} \delta
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{c} . . . c h a r g i n g}$ power

Conductance per length unit

$$
\mathrm{G}_{1}=\frac{\mathrm{P}_{\mathrm{d} 1}}{\mathrm{U}^{2}}(\mathrm{~S} / \mathrm{km} ; \mathrm{W} / \mathrm{km}, \mathrm{~V})
$$

Capacities

3 cable types:
a) full plastic (without conducting screen)
b) single-core with a metal screen or multi-core with a screen for each conductor
c) three-core with a common metal screen
ad a)
C is changing with cable placement and environment. It is measured.
ad b)
Only capacity of the conductor to the screen = operational.
For coaxial cylinder

$$
\mathrm{C}=\frac{0,0242 \varepsilon_{\mathrm{r}}}{\log \frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}} \quad(\mu \mathrm{~F} / \mathrm{km})
$$

$\varepsilon_{\mathrm{r}} \ldots$ insulation relative permittivity $(\sim 2,4$ for XLPE)

$\mathrm{r}_{1} \ldots$ conductor radius

$r_{2} \ldots$ screen mean radius

ad c)
As three phase symmetrical power lines.
Mirror method x along the metal screen.

Potential in the point P (from 1, 1^{\prime})

$$
\hat{\mathrm{U}}_{\mathrm{P}}=\frac{\hat{\mathrm{Q}}_{1}}{2 \pi \varepsilon} \ln \frac{\mathrm{~d}_{1 \mathrm{P}}}{\mathrm{~d}_{1 \mathrm{P}}}
$$

Potential on the screen surface is the same everywhere (from 1, 1^{\prime})

$$
\hat{\mathrm{U}}_{\mathrm{p} 1}=\hat{\mathrm{U}}_{\mathrm{P} 1}=\hat{\mathrm{U}}_{\mathrm{P} 2}
$$

$$
\frac{\hat{\mathrm{Q}}_{1}}{2 \pi \varepsilon} \ln \frac{\mathrm{a}^{\prime}-\mathrm{R}}{\mathrm{R}-\mathrm{a}}=\frac{\hat{\mathrm{Q}}_{1}}{2 \pi \varepsilon} \ln \frac{\mathrm{a}^{\prime}+\mathrm{R}}{\mathrm{R}+\mathrm{a}}
$$

Hence

$$
\begin{aligned}
& \mathrm{a}^{\prime}=\frac{\mathrm{R}^{2}}{\mathrm{a}} \\
& \hat{\mathrm{U}}_{\mathrm{pl}}=\frac{\hat{\mathrm{Q}}_{1}}{2 \pi \varepsilon} \ln \frac{\mathrm{R}}{\mathrm{a}}
\end{aligned}
$$

Capacities k_{0} to the screen
\rightarrow contribution to the conductor k potential from the conductors m and m^{\prime}

$$
\begin{aligned}
& \hat{\mathrm{U}}_{\mathrm{km}}^{\prime} \approx\left(\hat{\mathrm{U}}_{\mathrm{k}}-\hat{\mathrm{U}}_{\mathrm{m}}\right)+\left(\hat{\mathrm{U}}_{\mathrm{k}}-\hat{\mathrm{U}}_{\mathrm{m}^{\prime}}\right) \approx\left(\hat{\mathrm{U}}_{\mathrm{k}}-\hat{\mathrm{U}}_{\mathrm{m}}\right)+\left(\hat{\mathrm{U}}_{\mathrm{k}}-\hat{\mathrm{U}}_{\mathrm{z}}\right) \\
& \rightarrow \hat{\mathrm{U}}_{\mathrm{km}}^{\prime}=\hat{\mathrm{U}}_{\mathrm{km}}-\hat{\mathrm{U}}_{\mathrm{pl}}=\frac{\hat{\mathrm{Q}}_{1}}{2 \pi \varepsilon} \ln \frac{\mathrm{~d}_{\mathrm{km}}}{} \\
& \mathrm{~d}_{\mathrm{km}} \frac{\hat{\mathrm{Q}}_{1}}{2 \pi \varepsilon} \ln \frac{\mathrm{R}}{\mathrm{a}}=\frac{\hat{\mathrm{Q}}_{1}}{2 \pi \varepsilon} \ln \frac{\mathrm{~d}_{\mathrm{km}} \cdot}{} \cdot \mathrm{a} \\
& \mathrm{~d}_{\mathrm{km}} \cdot \mathrm{R}
\end{aligned}
$$

$$
\delta_{\mathrm{km}}^{\mathrm{x}}=\delta_{\mathrm{mk}}^{\mathrm{x}}=\frac{1}{2 \pi \varepsilon} \ln \frac{\mathrm{~d}_{\mathrm{km}^{\prime} \cdot \mathrm{a}}}{\mathrm{~d}_{\mathrm{km}} \cdot \mathrm{R}}
$$

Dimensions

$$
\begin{aligned}
\mathrm{d}_{\mathrm{kk}} & =\mathrm{r} \\
\mathrm{~d}_{\mathrm{km}} & =\mathrm{a} \sqrt{3} \\
\mathrm{~d}_{\mathrm{kk}} & =\mathrm{a}^{\prime}-\mathrm{a}=\frac{\mathrm{R}^{2}-\mathrm{a}^{2}}{\mathrm{a}} \\
\mathrm{~d}_{\mathrm{km}^{\prime}} & =\sqrt{\left(\mathrm{a}^{\prime}+\mathrm{a} \cos 60^{\circ}\right)^{2}+\left(\mathrm{a} \sin 60^{\circ}\right)^{2}} \\
& =\mathrm{R} \sqrt{1+\frac{\mathrm{R}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{a}^{2}}{\mathrm{R}^{2}}}
\end{aligned}
$$

Potential coefficients

$$
\begin{aligned}
& \delta=\frac{1}{0,0242 \varepsilon_{\mathrm{r}}} \log \frac{\mathrm{R}^{2}-\mathrm{a}^{2}}{\mathrm{R} \cdot \mathrm{r}}(\mathrm{~km} / \mu \mathrm{F}) \\
& \delta^{\prime}=\frac{1}{0,0242 \varepsilon_{\mathrm{r}}} \log \sqrt{\frac{1+\left(\frac{\mathrm{R}}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{a}}{\mathrm{R}}\right)^{2}}{3}}(\mathrm{~km} / \mu \mathrm{F})
\end{aligned}
$$

Capacity to the screen

$$
\mathrm{k}_{0}=\frac{1}{\delta+2 \delta^{\prime}}
$$

Mutual capacity

$$
\mathrm{k}^{\prime}=\frac{\delta^{\prime}}{\left(\delta+2 \delta^{\prime}\right) \cdot\left(\delta-\delta^{\prime}\right)}
$$

Operational capacity

$$
C=\frac{1}{\delta-\delta^{\prime}}
$$

Cable capacities are much higher than for overhead lines (c. $30 \div 50$ times) \rightarrow limited lengths of cable networks because of charging currents (10x km).

- $22 \mathrm{kV}-\mathrm{B}_{1} \approx(70 \div 90) \mu \mathrm{S} \cdot \mathrm{km}^{-1}$

