VOLTAGE DROP IN POWER SYSTEM

Simple DC line (LV, HV)

Double-wire circuit. Pre-condition: constant cross-section and resistance. El. traction, electrochemistry, light sources, long-distance transmission, power electronics.

Single load is fed from one side

a) addition method

Count voltage drops in circuit section by section.
(Voltage drop is counted for both conductors in section)
k-th section

$$
\mathrm{U}_{(\mathrm{k}-1)}-\mathrm{U}_{\mathrm{k}}=\Delta \mathrm{U}_{(\mathrm{k}-1) \mathrm{k}}=2 \frac{\rho}{\mathrm{~S}}\left(\mathrm{l}_{\mathrm{k}}-\mathrm{l}_{(\mathrm{k}-1)}\right) \cdot \mathrm{I}_{(\mathrm{k}-1) \mathrm{k}} \quad\left(\mathrm{~V} ; \Omega \mathrm{m}, \mathrm{~m}^{2}, \mathrm{~m}, \mathrm{~A}\right)
$$

Current in k-th section

$$
I_{(k-1) k}=\sum_{y=k}^{n} I_{y}
$$

Maximum voltage drop

$$
\Delta \mathrm{U}_{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \Delta \mathrm{U}_{(\mathrm{k}-1) \mathrm{k}}=2 \frac{\rho}{\mathrm{~S}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{l}_{\mathrm{k}}-\mathrm{l}_{(\mathrm{k}-1)}\right) \cdot \sum_{\mathrm{y}=\mathrm{k}}^{\mathrm{n}} \mathrm{I}_{\mathrm{y}}
$$

b) superposition method

Voltage drops are counted in places of discrete loads:

$$
\begin{aligned}
\Delta \mathrm{U}_{\mathrm{n}} & =2 \frac{\rho}{\mathrm{~S}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \mathrm{I}_{\mathrm{k}} \\
& 1_{\mathrm{k}} \mathrm{I}_{\mathrm{k}} \ldots \text { current moment to feed }
\end{aligned}
$$

Rated voltage drop:

$$
\varepsilon=\frac{\Delta \mathrm{U}}{\mathrm{U}_{\mathrm{n}}}(-; \mathrm{V}, \mathrm{~V})
$$

Note. Losses should be counted using additional!

$$
\begin{aligned}
& \Delta \mathrm{P}_{(\mathrm{k}-1) \mathrm{k}}=2 \frac{\rho}{\mathrm{~S}}\left(\mathrm{l}_{\mathrm{k}}-\mathrm{l}_{(\mathrm{k}-1)}\right) \cdot \mathrm{I}_{(\mathrm{k}-1) \mathrm{k}}^{2} \quad\left(\mathrm{~W} ; \Omega \mathrm{m}, \mathrm{~m}^{2}, \mathrm{~m}, \mathrm{~A}\right) \\
& \Delta \mathrm{P}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \Delta \mathrm{P}_{(\mathrm{k}-1) \mathrm{k}}
\end{aligned}
$$

Single load is fed from both sides - voltage level is the same

- Round grid, higher reliability of supply.
- Two one-side fed lines after fault.
- Evaluation of current distribution and voltage drops.

Consider I_{B} as negative load (power supply-feeder):

$$
\Delta \mathrm{U}_{\mathrm{AB}}=\mathrm{U}_{\mathrm{A}}-\mathrm{U}_{\mathrm{B}}=0=2 \frac{\rho}{\mathrm{~S}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \mathrm{I}_{\mathrm{k}}-2 \frac{\rho}{\mathrm{~S}} 1 \mathrm{I}_{\mathrm{B}}
$$

Hence (moment's theorem)

$$
I_{B}=\frac{\sum_{k=1}^{n} 1_{k} I_{k}}{1}
$$

Analogically (current moments to other feeder)

$$
\mathrm{I}_{\mathrm{A}}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(1-\mathrm{l}_{\mathrm{k}}\right) \mathrm{I}_{\mathrm{k}}}{1}
$$

Therefore

$$
\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}=\sum_{\mathrm{y}=1}^{\mathrm{n}} \mathrm{I}_{\mathrm{y}}
$$

Current distribution identify the place with the biggest voltage drop $=$ the place with feeder division \rightarrow split-up to two one-side fed lines.

Single load is fed from both sides - voltage level is different
Two different sources, mesh grid.

Superposition:

1) Current distribution with the same voltages.
2) Different voltage and zero loads \rightarrow balancing current

$$
\mathrm{I}_{\mathrm{v}}=\frac{\mathrm{U}_{\mathrm{A}}-\mathrm{U}_{\mathrm{B}}}{2 \frac{\rho}{\mathrm{~S}} 1}
$$

3) Sum of the solutions $1+2$

Further calculation is the same.
Or directly:

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{A}}-\mathrm{U}_{\mathrm{B}}=2 \frac{\rho}{\mathrm{~S}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \mathrm{I}_{\mathrm{k}}-2 \frac{\rho}{\mathrm{~S}} 1 \mathrm{I}_{\mathrm{B}} \\
& \mathrm{I}_{\mathrm{B}}=\frac{2 \frac{\rho}{\mathrm{~S}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \mathrm{I}_{\mathrm{k}}}{2 \frac{\rho}{\mathrm{~S}} 1}-\frac{\mathrm{U}_{\mathrm{A}}-\mathrm{U}_{\mathrm{B}}}{2 \frac{\rho}{\mathrm{~S}} 1}
\end{aligned}
$$

Direct current transmission at UHV

Long distance energy transmission or local stations (AC-DC-AC).
Reasons:

- transmission stability, power systems connection,
- short-circuit conditions,
- parameters compensation,
- economic aspects.

Lower insulation distances are available and higher transmission capacity than for AC systems.
DC voltage regulation.
Principle

Applications:

a) Earth as back conductor. Ground resistance does not depend on line length but on ground connection. Suitability for unoccupied places (corroding process, EMC).
b) Two wires line. Compared to 3 f less material, lighter towers.
c) Two convertors in series. Low balancing ground current caused by asymmetry. During fault transforms to a), half power.

450 kV DC Canada

Complex power in AC grids

3phase

$$
\begin{gathered}
\mathrm{P}=3 \mathrm{U}_{\mathrm{f}} \mathrm{I} \cos \varphi=\sqrt{3} \mathrm{UI} \cos \varphi \quad(\mathrm{~W}) \\
\mathrm{Q}=3 \mathrm{U}_{\mathrm{f}} \mathrm{I} \sin \varphi=\sqrt{3} \mathrm{UI} \sin \varphi \quad(\mathrm{VAr}) \\
\mathrm{S}=3 \mathrm{U}_{\mathrm{f}} \mathrm{I}=\sqrt{3} \mathrm{UI}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}} \quad(\mathrm{VA})
\end{gathered}
$$

Complex (1phase)

$$
\hat{\mathrm{S}}_{\mathrm{f}}=\mathrm{P}_{\mathrm{f}} \pm \mathrm{jQ}_{\mathrm{f}}=\mathrm{U}_{\mathrm{f}} \mathrm{I}(\cos \varphi \pm \mathrm{j} \sin \varphi)=\mathrm{S}_{\mathrm{f}} \mathrm{e}^{ \pm j \varphi}
$$

Sign according convention.
Inductive load:

$$
\hat{U}_{f}=U_{f} \mathrm{e}^{\mathrm{j} \varphi_{\mathrm{p}}}, \hat{I}_{\mathrm{f}}=\mathrm{Ie}^{\mathrm{j} \varphi_{\mathrm{i}}}
$$

Complex current sum:

$$
\begin{aligned}
& \hat{\mathrm{S}}_{\mathrm{f}}=\hat{\mathrm{U}}_{\mathrm{f}} \hat{\mathrm{I}}^{*}=\mathrm{U}_{\mathrm{f}} \mathrm{I}^{\left.\mathrm{j} \varphi_{\mathrm{u}}-\varphi_{\mathrm{i}}\right)}=\mathrm{U}_{\mathrm{f}} \mathrm{Ie}^{\mathrm{j} \varphi} \\
& \hat{S}_{f}=\hat{U}_{f} \hat{I}^{*}=P_{f} \pm j Q_{f} I N D \\
& C A P
\end{aligned}
$$

3 phase lines of LV, HV

Series parameters are applied, for LV X $\rightarrow 0$.
3 phase line HV, 1 load at the end
Symmetrical load \rightarrow 1phase scheme, operating parameters.

Complex voltage drop:

$$
\begin{gathered}
\Delta \hat{U}_{f}=\hat{Z}_{l} \hat{I}=(R+j X)\left(I_{\check{c}} \mp j I_{j}\right)_{C A P}^{I N D} \\
\Delta \hat{U}_{f}=R I_{\check{c}} \pm X I_{j}+j\left(X I_{\check{c}} \mp R I_{j}\right)^{I N D} \\
\text { value } \quad \text { phase }
\end{gathered}
$$

Phasor diagram (input $\mathrm{U}_{\mathrm{f} 2}, \mathrm{I}, \varphi_{2}$) (angle v usually small, up to 3°) After imag. part neglect and modification:

$$
\Delta \mathrm{U}_{\mathrm{f}}=\frac{\mathrm{R} 3 \mathrm{U}_{\mathrm{f}} \mathrm{I}_{\check{\mathrm{c}}} \pm \mathrm{X}^{2} \mathrm{U}_{\mathrm{f}} \mathrm{I}_{\mathrm{j}}}{3 \mathrm{U}_{\mathrm{f}}}=\frac{\mathrm{RP} \pm \mathrm{XQ}}{3 \mathrm{U}_{\mathrm{f}}}
$$

Percentage voltage drop:

$$
\varepsilon=\frac{\Delta \mathrm{U}_{\mathrm{f}}}{\mathrm{U}_{\mathrm{f}}}=\frac{\mathrm{RP} \pm \mathrm{XQ}}{3 \mathrm{U}_{\mathrm{f}}^{2}}=\frac{\mathrm{RP} \pm \mathrm{XQ}}{\mathrm{U}^{2}}
$$

3 phase active power losses:

$$
\begin{aligned}
\Delta \hat{\mathrm{S}} & =3 \Delta \hat{\mathrm{U}}_{\mathrm{f}} \hat{\mathrm{I}}^{*}=3 \hat{\mathrm{Z}}_{\mathrm{I}} \hat{\mathrm{I}} \cdot \hat{\mathrm{I}}^{*}=3 \hat{\mathrm{Z}}_{\mathrm{I}} \mathrm{I}^{2}= \\
& =3(\mathrm{R}+\mathrm{jX}) \mathrm{I}^{2}=3 R \mathrm{I}^{2}+\mathrm{j} 3 \mathrm{XI}^{2} \\
\Delta \mathrm{P} & =3 \mathrm{I}^{2}=3 \mathrm{R}\left(\mathrm{I}_{\check{\mathrm{c}}}^{2}+\mathrm{I}_{\mathrm{j}}^{2}\right) \quad(\mathrm{W} ; \Omega, \mathrm{A})
\end{aligned}
$$

! Even reactive current causes active power losses! \rightarrow Reactive power compensation

3 phase HV line one-side fed

Constant series impedance

$$
\hat{\mathrm{Z}}_{\mathrm{l}_{1}}=\mathrm{R}_{1}+\mathrm{j} \mathrm{X}_{1} \quad(\Omega / \mathrm{km})
$$

Voltage drop at the end (does not have to be the highest, it depends on load character)

$$
\Delta \hat{\mathrm{U}}_{\mathrm{fAn}}=\hat{\mathrm{Z}}_{\mathrm{I}_{1}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \hat{\mathrm{I}}_{\mathrm{k}}
$$

After imag. part neglect:

$$
\begin{aligned}
& \Delta U_{f A n} \doteq R_{1} \sum_{k=1}^{n} l_{k} I_{c k} \pm X_{1} \sum_{k=1}^{n} l_{k} I_{j k} \text { IND } \\
& \text { CAP } \\
& \Delta U_{f A n} \doteq \frac{R_{1} \sum_{k=1}^{n} l_{k} P_{k} \pm X_{1} \sum_{k=1}^{n} l_{k} Q_{k}}{3 U_{f}} \text { IND }
\end{aligned}
$$

Voltage drop up to point X (superposition)

$$
\Delta \hat{\mathrm{U}}_{\mathrm{fAX}}=\hat{\mathrm{Z}}_{\mathrm{l}_{1}} \sum_{\mathrm{k}=1}^{\mathrm{X}} 1_{\mathrm{k}} \hat{\mathrm{I}}_{\mathrm{k}}+\hat{\mathrm{Z}}_{\mathrm{l}_{1}} 1_{\mathrm{AX}} \sum_{\mathrm{k}=\mathrm{X}+1}^{\mathrm{n}} \hat{\mathrm{I}}_{\mathrm{k}}
$$

3 phase HV line doth-side fed

Calculation as for DC line (feeder is negative load, zero voltage drop)

$$
\Delta \hat{\mathrm{U}}_{\mathrm{AB}}=0=\hat{\mathrm{Z}}_{\mathrm{I}_{1}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \hat{\mathrm{I}}_{\mathrm{k}}-\hat{\mathrm{Z}}_{\mathrm{l}_{1}} 1 \cdot \hat{\mathrm{I}}_{\mathrm{B}}
$$

Moment's theorems:

$$
\hat{\mathrm{I}}_{\mathrm{B}}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \hat{\mathrm{I}}_{\mathrm{k}}}{1} \quad \hat{\mathrm{I}}_{\mathrm{A}}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(1-1_{\mathrm{k}}\right) \hat{\mathrm{I}}_{\mathrm{k}}}{1} \quad \hat{\mathrm{I}}_{\mathrm{A}}+\hat{\mathrm{I}}_{\mathrm{B}}=\sum_{\mathrm{y}=1}^{\mathrm{n}} \hat{\mathrm{I}}_{\mathrm{y}}
$$

(in principle is talking about current divider for each load) Active and reactive power sign change could be in different nodes \rightarrow maximum voltage drop should be controlled at both feeders.

Nodal grid HV

NO!

YES!

Nodal voltage method

Grid with n nodes. Set series branch parameters $\hat{\mathrm{Z}}_{\mathrm{km}}$, load current (nodal current) $\hat{\mathrm{I}}_{\mathrm{k}}$, min. 1 nodal voltage $\hat{\mathrm{U}}_{\mathrm{fk}}$.

Calculation with series admittances

$$
\hat{\mathrm{Y}}_{\mathrm{km}}=\hat{\mathrm{Z}}_{\mathrm{km}}^{-1}=\frac{1}{R_{\mathrm{km}}+\mathrm{j} X_{\mathrm{km}}}
$$

Node k :

$$
\begin{aligned}
& \hat{\mathrm{I}}_{\mathrm{k}}+\sum_{\substack{\mathrm{m}=1 \\
\mathrm{~m} \neq \mathrm{k}}}^{\mathrm{n}} \hat{\mathrm{I}}_{\mathrm{km}}+\hat{\mathrm{I}}_{\mathrm{k} 0}=0 \\
& \hat{\mathrm{I}}_{\mathrm{k} 0}=\hat{\mathrm{U}}_{\mathrm{fk}} \hat{\mathrm{Y}}_{\mathrm{k} 0}
\end{aligned}
$$

Branch k, m :

$$
\hat{\mathrm{I}}_{\mathrm{km}}=\left(\hat{\mathrm{U}}_{\mathrm{fk}}-\hat{\mathrm{U}}_{\mathrm{fm}}\right) \hat{\mathrm{Y}}_{\mathrm{km}}
$$

After modification:

$$
\hat{\mathrm{I}}_{\mathrm{k}}=-\sum_{\substack{\mathrm{m}=1 \\ \mathrm{~m} \neq \mathrm{k}}}^{\mathrm{n}}\left(\hat{\mathrm{U}}_{\mathrm{fk}}-\hat{\mathrm{U}}_{\mathrm{fm}}\right) \hat{\mathrm{Y}}_{\mathrm{km}}-\hat{\mathrm{U}}_{\mathrm{fk}} \hat{\mathrm{~K}}_{\mathrm{k} 0}
$$

$$
\hat{I}_{k}=-\hat{U}_{\mathrm{tk}}\left(\sum_{\substack{\mathrm{m}=\mathrm{Y} \\ \mathrm{~m} \neq \mathrm{k}}}^{\mathrm{n}} \hat{Y}_{\mathrm{km}}+\hat{\mathrm{Y}}_{\mathrm{k} 0}\right)+\sum_{\substack{\mathrm{m}=1 \\ \mathrm{~m} \neq \mathrm{K}}}^{\mathrm{n}} \hat{\mathrm{U}}_{\mathrm{fm}} \hat{\mathrm{Y}}_{\mathrm{km}}
$$

Admittance matrix parameters set: Nodal self-admittance (diagonal):

$$
\hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{k})}=-\sum_{\substack{\mathrm{m}=1 \\ \mathrm{~m} \neq \mathrm{k}}}^{\mathrm{n}} \hat{\mathrm{Y}}_{\mathrm{km}}-\hat{\mathrm{Y}}_{\mathrm{k} 0}
$$

Between nodes admittance (non-diagonal):

$$
\begin{aligned}
& \hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{~m})}=\hat{\mathrm{Y}}_{(\mathrm{m}, \mathrm{k})}=\hat{\mathrm{Y}}_{\mathrm{km}} \quad \text { pro } \mathrm{m} \neq \mathrm{k} \\
& \left(\text { for non-connected nodes } \hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{~m})}=0\right)
\end{aligned}
$$

Hence

$$
\hat{\mathrm{I}}_{\mathrm{k}}=\sum_{\mathrm{m}=1}^{\mathrm{n}} \hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{~m})} \hat{\mathrm{U}}_{\mathrm{fm}}
$$

Matrix form:

$$
(\hat{I})=(\hat{Y})\left(\hat{U}_{f}\right)
$$

Set voltages at nodes 1 to $k(\mathrm{x})$, currents at nodes $k+1$ to $n(\mathrm{y})$

$$
\binom{\left(\hat{\mathrm{I}}_{\mathrm{x}}\right)}{\hat{\mathrm{I}}_{\mathrm{y}}}=\left(\begin{array}{cc}
\left(\hat{\mathrm{Y}}_{\mathrm{xx}}\right) & \left(\hat{\mathrm{Y}}_{\mathrm{xy}}\right. \\
\left(\hat{\mathrm{Y}}_{\mathrm{xy}}\right)^{\mathrm{T}} & \left(\hat{\mathrm{Y}}_{\mathrm{yy}}\right.
\end{array}\right)\binom{\left(\hat{\mathrm{U}}_{\mathrm{fx}}\right)}{\left(\hat{\mathrm{U}}_{\mathrm{fy}}\right.}
$$

Hence

$$
\begin{aligned}
& \left(\hat{\mathrm{I}}_{\mathrm{x}}\right)=\left(\hat{Y}_{\mathrm{xx}}\right)\left(\hat{U}_{\mathrm{fx}}\right)+\left(\hat{Y}_{\mathrm{xy}}\right)\left(\hat{U}_{\mathrm{fy}}\right) \\
& \left.\left(\hat{\mathrm{I}}_{\mathrm{y}}\right)=\left(\hat{Y}_{\mathrm{xy}}\right)^{\mathrm{T}}\left(\hat{U}_{\mathrm{fx}}\right)+\left(\hat{Y}_{\mathrm{yy}}\right) \hat{U}_{\mathrm{fy}}\right)
\end{aligned}
$$

Calculate $\left(\hat{I}_{x}\right),\left(\hat{U}_{f y}\right)$

$$
\left(\hat{\mathrm{U}}_{\mathrm{fy}}\right)=\left(\hat{\mathrm{Y}}_{\mathrm{yy}}\right)^{-1}\left(\hat{\mathrm{I}}_{\mathrm{y}}\right)-\left(\hat{\mathrm{Y}}_{\mathrm{yy}}\right)^{-1}\left(\hat{\mathrm{Y}}_{\mathrm{xy}}\right)^{\mathrm{T}}\left(\hat{\mathrm{U}}_{\mathrm{fx}}\right)
$$

If some nodes are connected to the ground (through admittance), then admittance matrix is regular \rightarrow to set all nodal current is enough.

$$
\left(\hat{U}_{\mathrm{f}}\right)=(\hat{\mathrm{Y}})^{-1}(\hat{\mathrm{I}})
$$

Note 1: Similar for DC grid.

$$
(\mathrm{I})=(\mathrm{G})(\mathrm{U})
$$

Note 2: For power engineering - powers are set, than current are calculated.

$$
\hat{\mathrm{I}}=\left(\frac{\hat{\mathrm{S}}}{\sqrt{3} \hat{\mathrm{U}}}\right)^{*}
$$

Results are not accurate if nominal voltages are used \rightarrow iteration method.

