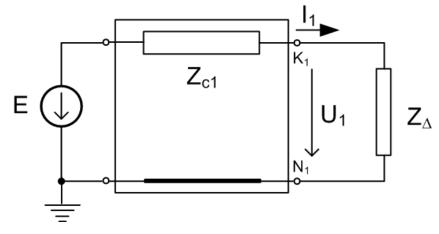
Short-circuits in ES (2nd part)

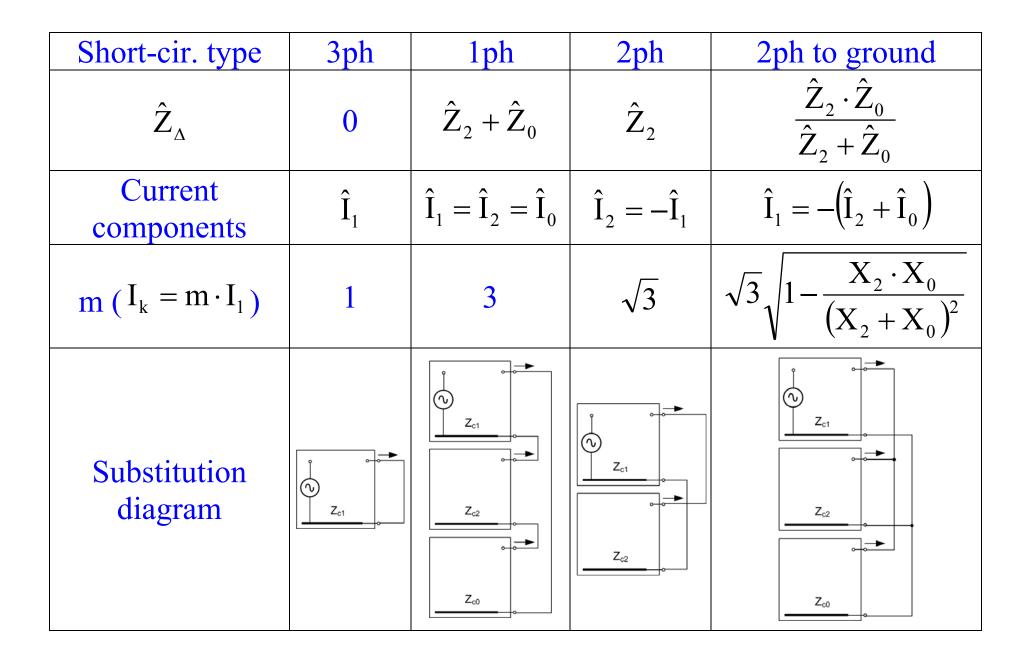
Unbalanced short-circuits equivalence with three-phase short-circuit

Positive-sequence current component calculation by means of an additional impedance (in the short-circuit place according to short-circuit type)



Generalized relation

$$\hat{\mathbf{I}}_1 = \frac{\hat{\mathbf{E}}}{\hat{\mathbf{Z}}_1 + \hat{\mathbf{Z}}_{\Lambda}}$$



Individual short-circuit types comparison

For: t = 0 (I''), R = 0, $X_1 = X_2$ ratio X_0/X_1 can be changed from 0 to ∞ reference 3ph short-circuit

Three-phase short-circuit

$$I_k''^{(3)} = I_1 = \frac{E''}{X_1}$$

Single-phase-to-ground short-circuit

$$I_{k}^{\prime\prime(1)} = 3I_{1} = \frac{3E^{\prime\prime}}{X_{1} + X_{2} + X_{0}} = \frac{3X_{1}}{2X_{1} + X_{0}}I_{k}^{\prime\prime(3)} = \frac{3}{2 + \frac{X_{0}}{X_{1}}}I_{k}^{\prime\prime(3)}$$

$$I_{k}^{\prime\prime(1)} = (0 \div 1, 5) I_{k}^{\prime\prime(3)}$$

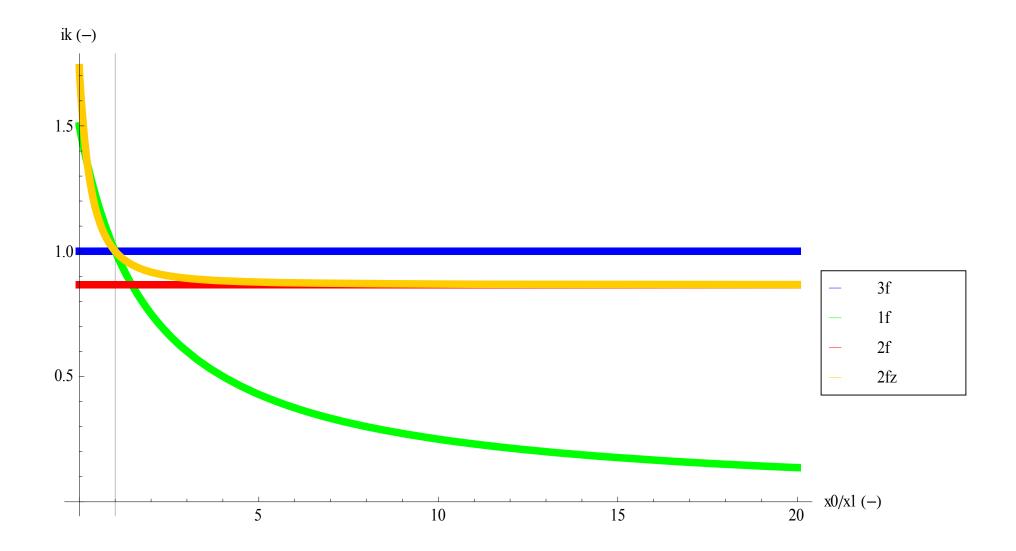
Phase-to-phase short-circuit

$$I_{k}^{\prime\prime(2)} = \sqrt{3}I_{1} = \frac{\sqrt{3}E^{\prime\prime}}{X_{1} + X_{2}} = \frac{\sqrt{3}X_{1}}{2X_{1}}I_{k}^{\prime\prime(3)} = \frac{\sqrt{3}}{2}I_{k}^{\prime\prime(3)} \cong 0,866 I_{k}^{\prime\prime(3)}$$

Double-phase-to-ground short-circuit

$$I_{k}^{\prime\prime(2z)} = \sqrt{3}\sqrt{1 - \frac{X_{2} \cdot X_{0}}{(X_{2} + X_{0})^{2}}} \frac{E^{\prime\prime}}{X_{1} + \frac{X_{2} \cdot X_{0}}{X_{2} + X_{0}}} = \sqrt{3}\sqrt{1 - \frac{\frac{X_{0}}{X_{1}}}{\left(1 + \frac{X_{0}}{X_{1}}\right)^{2}}} \frac{I_{k}^{\prime\prime(3)}}{1 + \frac{\frac{X_{0}}{X_{1}}}{1 + \frac{X_{0}}{X_{1}}}}$$

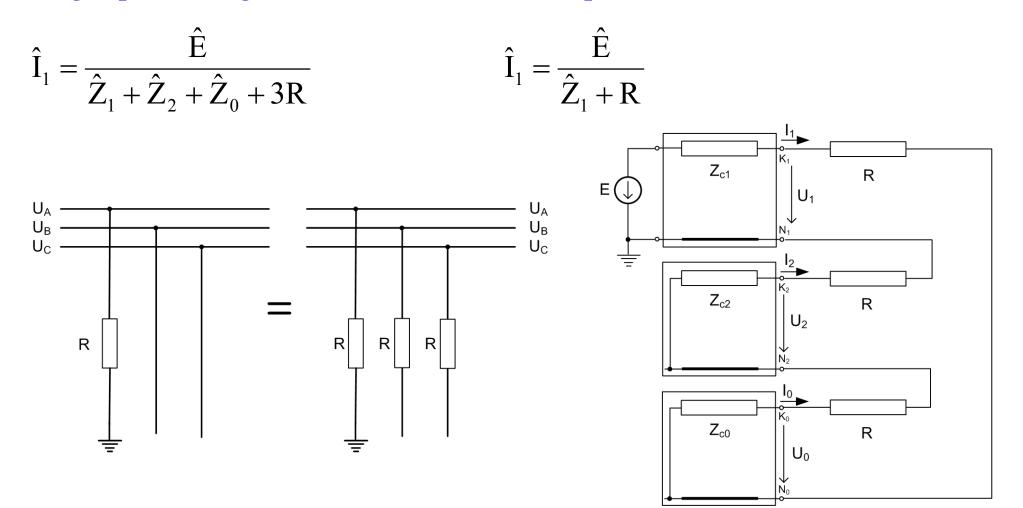
$$\mathbf{I}_{\mathbf{k}}^{\prime\prime(2\mathbf{z})} = \left(\frac{\sqrt{3}}{2} \div \sqrt{3}\right) \mathbf{I}_{\mathbf{k}}^{\prime\prime(3)}$$



Arc influence during short-circuit

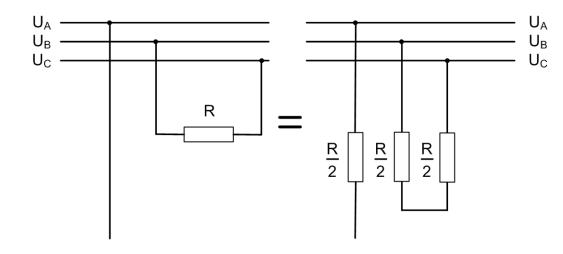
Single-phase-to-ground s.-c.

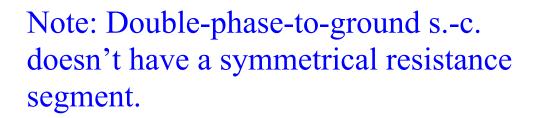
Three-phase s.-c.

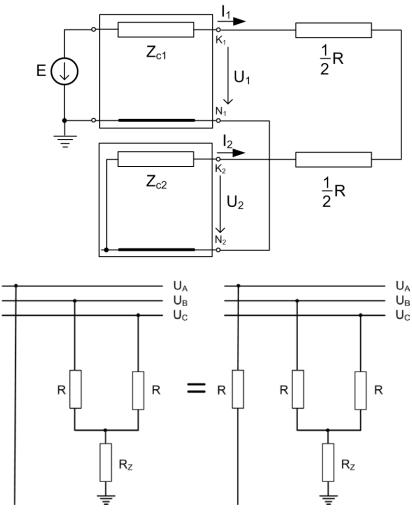


Phase-to-phase s.-c.

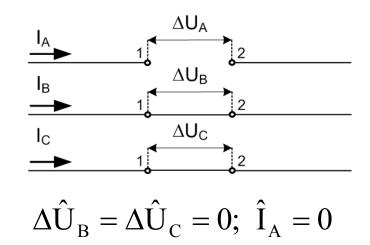
$$\hat{\mathbf{I}}_1 = \frac{\hat{\mathbf{E}}}{\hat{\mathbf{Z}}_1 + \hat{\mathbf{Z}}_2 + \mathbf{R}}$$



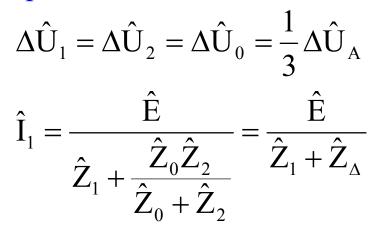


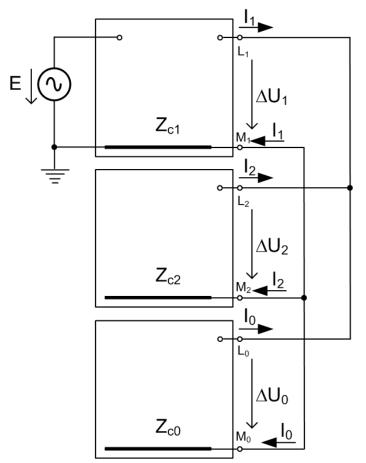


Single-phase interruption (analogy with double-phase-to-ground s.-c.)

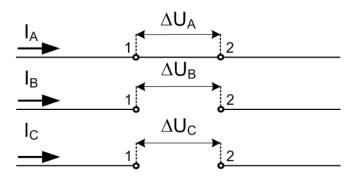


Components





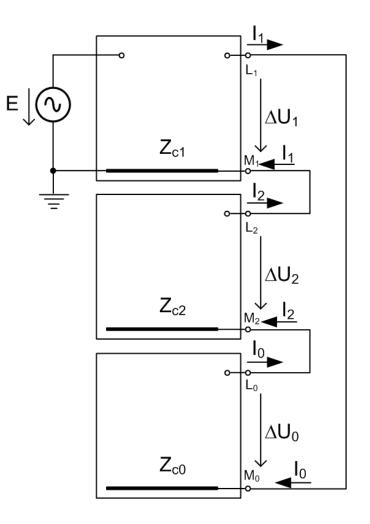
Double-phase interruption (analogy with single-phase-to-ground s.-c.)



$$\Delta \hat{U}_{A} = 0; \ \hat{I}_{B} = \hat{I}_{C} = 0$$

Components

$$\hat{I}_1 = \hat{I}_2 = \hat{I}_0 = \frac{\hat{E}}{\hat{Z}_1 + \hat{Z}_2 + \hat{Z}_0} = \frac{1}{3}\hat{I}_A$$



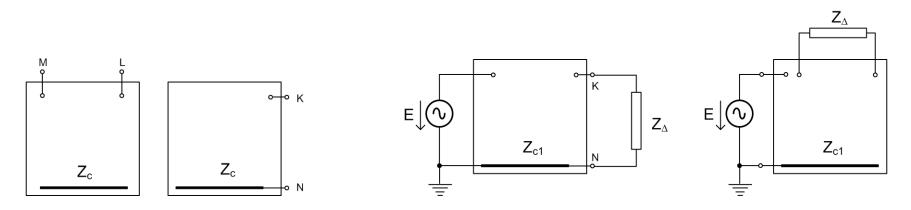
Analogy between interruptions and short-curcuits

Sequence impedances

- short-circuits between s.-c. place and the ground
- interruption between places on both sides of the interruption

Similarly for the additional impedance.

Sources always by means of impedances to the ground.



Multiple unbalances in ES

 a^2

а

 $|U_0|$

 Z_{c0}

Single-phase-to-ground short-circuit in phase B, reference phase A

$$(I_{120}) = (T^{-1})(I_{ABC}) = \frac{1}{3} \begin{pmatrix} 1 & \hat{a} & \hat{a}^{2} \\ 1 & \hat{a}^{2} & \hat{a} \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \hat{I}_{B} \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} \hat{a}\hat{I}_{B} \\ \hat{a}^{2}\hat{I}_{B} \\ \hat{I}_{B} \end{pmatrix}$$
$$\hat{I}_{1} = \hat{a}\hat{I}_{0}; \hat{I}_{2} = \hat{a}^{2}\hat{I}_{0}; \hat{I}_{0} = \frac{1}{3}\hat{I}_{B}$$
$$\hat{p}_{0} = 1$$
$$\hat{p}_{1} = \frac{\hat{I}_{0}}{\hat{I}_{1}} = \frac{1}{\hat{a}} = \hat{a}^{2}$$
$$\hat{p}_{2} = \frac{\hat{I}_{0}}{\hat{I}_{2}} = \frac{1}{\hat{a}^{2}} = \hat{a}$$

Note: TRF ratio (1ph)

$$\hat{u}_{s} = \hat{p}_{u}\hat{u}_{p}$$
$$\hat{i}_{s} = \hat{p}_{i}\hat{i}_{p}$$

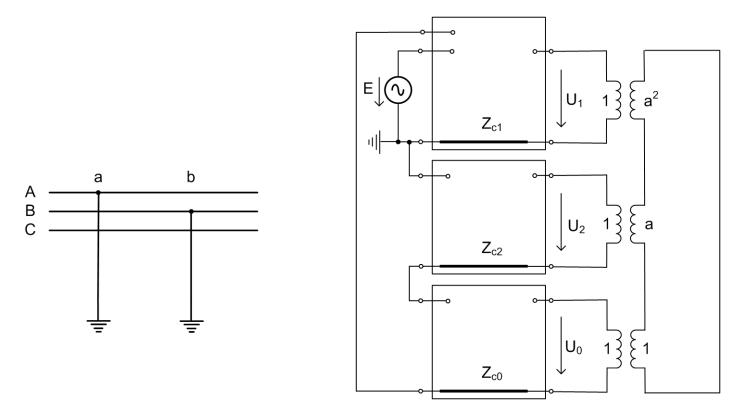
power invariance

$$\hat{u}_{s} \cdot \hat{i}_{s}^{*} = \hat{p}_{u} \hat{u}_{p} \cdot \hat{p}_{i}^{*} \hat{i}_{p}^{*} = \hat{u}_{p} \cdot \hat{i}_{p}^{*}$$
$$\hat{p}_{u} = \frac{1}{\hat{p}_{i}^{*}}$$
$$If \quad \hat{p}_{u} = \hat{a} \quad then \quad \hat{p}_{i} = \frac{1}{\hat{a}^{*}} = \frac{1}{\hat{a}^{2}} = \hat{a} = \hat{p}_{u}$$

•

It is valid for reference phase B $\hat{U}_{1} = \hat{U}_{R1}, \hat{U}_{2} = \hat{U}_{R2}, \hat{U}_{0} = \hat{U}_{R0}$ $\hat{U}_{A} = \hat{a}\hat{U}_{1} + \hat{a}^{2}\hat{U}_{2} + \hat{U}_{0}$ $\hat{U}_{P} = \hat{U}_{1} + \hat{U}_{2} + \hat{U}_{0}$ $\hat{U}_{C} = \hat{a}^{2}\hat{U}_{1} + \hat{a}\hat{U}_{2} + \hat{U}_{0}$ $(T) = \begin{pmatrix} \hat{a} & \hat{a}^2 & 1 \\ 1 & 1 & 1 \\ \hat{a}^2 & \hat{a} & 1 \end{pmatrix} \qquad (T^{-1}) = \frac{1}{3} \begin{pmatrix} \hat{a}^2 & 1 & \hat{a} \\ \hat{a} & 1 & \hat{a}^2 \\ 1 & 1 & 1 \end{pmatrix}$ $(I_{120}) = (T^{-1})(I_{ABC}) = \frac{1}{3} \begin{pmatrix} \hat{a}^2 & 1 & \hat{a} \\ \hat{a} & 1 & \hat{a}^2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \hat{I}_B \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} \hat{I}_B \\ \hat{I}_B \\ \hat{I} \end{pmatrix}$

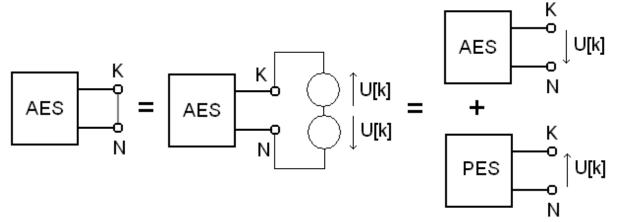
Two simultaneous single-phase-to-ground short-circuits in different ES places



More than 2 faults \rightarrow sequence diagrams interconnection is complicated \rightarrow rather calculation in phases.

Short-circuit impedance matrix

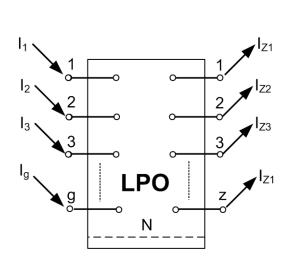
- short-circuit is replaces by two sources with U[k] voltage and the opposite orientation
- U[k] voltage size equals to voltage value in the node *k* just before the fault
- superposition principle

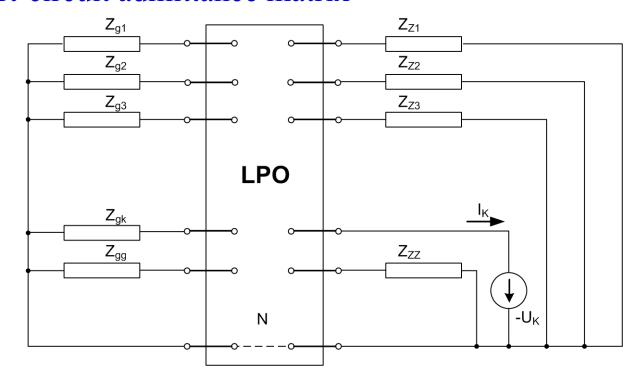


- AES (active ES) => ES steady-state just before the short-circuit, sources modelled by an ideal voltage source and generator reactance
- PES (passive ES) => without sources: fault state, generators replaced only by sub-transient reactance against the ground

$$(\mathbf{I}) = (\mathbf{Y})(\mathbf{U})$$
$$\hat{\mathbf{Y}}_{(k,k)} = \sum_{m \in M_i} \hat{\mathbf{Y}}_{km} \qquad \hat{\mathbf{Y}}_{(k,m)} = -\hat{\mathbf{Y}}_{km}$$

ES simplified diagrama) corresponding with node admittance matrixb) corresponding with short-circuit admittance matrix





All node currents are zero except the short-circuit place, here an ideal voltage source \rightarrow short-circuit admittance matrix.

$$(I) = (Y_k)(U)$$

$$\begin{pmatrix} 0 \\ \vdots \\ -\hat{I}_k \\ \vdots \\ 0 \end{pmatrix} = (Y_k) \begin{pmatrix} \hat{U}_1 \\ \vdots \\ -\hat{U}_k \\ \vdots \\ \hat{U}_n \end{pmatrix}$$

Conversion to short-circuit impedance matrix $(U) = (Y_k)^{-1}(I) = (Z_k)(I)$

$$\begin{pmatrix} \hat{U}_{1} \\ \vdots \\ -\hat{U}_{k} \\ \vdots \\ \hat{U}_{n} \end{pmatrix} = \begin{pmatrix} \hat{Z}_{(1,1)} & \cdots & \hat{Z}_{(1,n)} \\ \vdots & \ddots & \vdots \\ \hat{Z}_{(k,k)} & \vdots \\ \hat{Z}_{(k,k)} & \ddots & \hat{Z}_{(n,n)} \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ -\hat{I}_{k} \\ \vdots \\ 0 \end{pmatrix}$$

Short-circuit current

$$\hat{I}_{k} = \frac{\hat{U}_{k}}{\hat{Z}_{(k,k)}}$$
$$\hat{Z}_{(k,k)}$$
 short-circuit impedance in the node *k*

Voltage in any node

$$\hat{U}_{j} = -\hat{Z}_{(j,k)}\hat{I}_{k}$$

Current in a branch

$$\hat{I}_{ij} = \frac{\hat{U}_i - \hat{U}_j}{\hat{Z}_{ij}} = \frac{\hat{Z}_{(j,k)} - \hat{Z}_{(i,k)}}{\hat{Z}_{ij}} \hat{I}_k$$

$$\hat{Z}_{ij} \qquad \text{impedance of the branch between the nodes } i \text{ and } j$$

Real node voltages and real branch currents during short-circuits are: fault = AES + PES $I_{ii}^{k} = I_{(ii)} + I_{ii}$ $U_{i}^{k} = U_{(i)} + U_{i}$

where: current in the branch between the nodes *i* and *j*, node *j* voltage

 $\begin{array}{ll} I_{ij}^{\ k}, U_j^{\ k} & \mbox{during short-circuit} \\ I_{(ij)}, U_{(j)} & \mbox{just before the short-circuit origin} \\ I_{ij}, U_j & \mbox{self fault state} \end{array}$

Short-circuit currents impacts

Mechanical impacts

Influence mainly at tightly placed stiff conductors, supporting insulators, disconnectors, construction elements,...

Forces frequency 2f at AC \rightarrow dynamic strain.

Force on the conductor in magnetic field $F = B \cdot I \cdot l \cdot \sin \alpha \quad (N)$ $B = \mu \cdot H \quad (T)$ $\mu_0 = 4\pi \cdot 10^{-7} \quad (H/m)$ $\alpha - \text{angle between mag. induction vector and the conductor axis (current direction)}$

Magnetic field intensity in the distance **a** from the conductor

$$H = \frac{I}{2\pi a} \quad (A/m)$$

2 parallel conductors \rightarrow force perpendicular to the conductor axis $(\sin \alpha = 1) \rightarrow$ it is the biggest

F =
$$4\pi \cdot 10^{-7} \frac{I}{2\pi a} Il = 2 \cdot 10^{-7} \frac{I^2}{a} l$$
 (N)

The highest force corresponds to the highest immediate current value \rightarrow <u>peak short-circuit current</u> I_{km} (1st magnitude after s.-c. origin)

$$I_{km} = \sqrt{2} I_{k0}'' \left(1 + e^{-0.01/T_k} \right) = \kappa \sqrt{2} I_{k0}'' \quad (A)$$

- κ peak coefficient according to grid type ($\kappa_{LV} = 1,8$; $\kappa_{HV} = 1,7$) theoretical range $\kappa = 1 \div 2$
- T_k time constant of equivalent short-circuit loop (L_e/R_e)
 - i.e. for DC component of short-circuit current
- I''_{k0} initial sub-transient short-circuit current

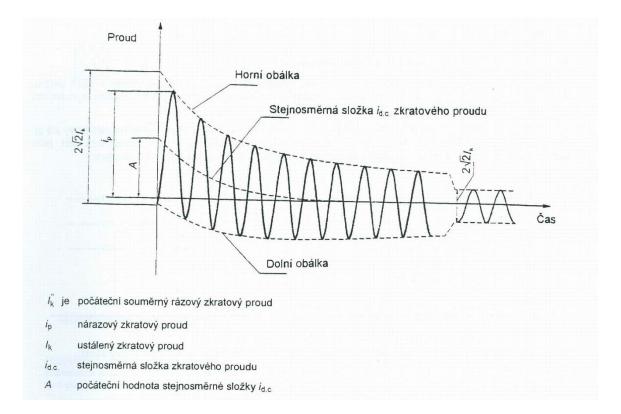
Real value differs according to the short-circuit origin moment. AC component decreasing slower than for DC therefore neglected. Max. instantaneous force on the conductor length unit

$$f = 2 \cdot k_1 \cdot k_2 \cdot 10^{-7} \frac{I_{km}^2}{a} \quad (N/m)$$

$$k_1 - \text{ conductor shape coefficient}$$

$$k_2 - \text{ conductors configuration and currents}$$

a – conductors distance



Heat impacts

Key for dimensioning mainly at freely placed conductors. They are given by heat accumulation influenced by time-changing current during short-circuit time t_k (adiabatic phenomenon).

Heat produced in conductors

$$Q = \int_{0}^{t_{k}} R(\vartheta) \cdot i_{k}^{2}(t) dt \quad (J)$$

<u>Thermal equivalent current</u> – current RMS value which has the same heating effect in the short-circuit duration time as the real short-circuit current

$$I_{ke}^{2}t_{k} = \int_{0}^{t_{k}} i_{k}^{2}(t)dt \qquad I_{ke} = \sqrt{\frac{1}{t_{k}}}\int_{0}^{t_{k}} i_{k}^{2}(t)dt \quad (A)$$

Calculation according to k_e coefficient as I''_k multiple $I_{ke} = k_e I''_k$

	Coefficient k _e		
Short-circuit	Sc. on	Sc. in ES	
duration time	generator	HV, MV	LV
$\boldsymbol{t}_{k}\left(\mathbf{s} ight)$	terminals		
pod 0,05	1,70	1,60	1,50
0,05 - 0,1	1,60	1,50	1,20
0,1-0,2	1,55	1,40	1,10
0,2-1,0	1,50	1,30	1,05
1,0-3,0	1,30	1,10	1,00
nad 3,0	1,15	1,00	1,00