
Short-circuits in ES (2nd part) 
 

Unbalanced short-circuits equivalence with three-phase short-circuit 
 

Positive-sequence current component calculation by means of an additional 
impedance (in the short-circuit place according to short-circuit type) 

 
Generalized relation 
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Individual short-circuit types comparison 
 

For: t = 0 (I’’), R = 0, X1 = X2 

  ratio X0/X1 can be changed from 0 to ∞ 
  reference 3ph short-circuit 
 

Three-phase short-circuit 
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Single-phase-to-ground short-circuit 
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Phase-to-phase short-circuit 
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Double-phase-to-ground short-circuit 
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Arc influence during short-circuit 
 

Single-phase-to-ground s.-c.   Three-phase s.-c. 
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Phase-to-phase s.-c. 
 

RẐẐ
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Note: Double-phase-to-ground s.-c. 
doesn’t have a symmetrical resistance 
segment. 
 



Phase interruption 
 

Single-phase interruption (analogy with double-phase-to-ground s.-c.) 
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Double-phase interruption (analogy with single-phase-to-ground s.-c.) 
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ÊÎÎÎ 


  
 



Analogy between interruptions and short-curcuits 
 

Sequence impedances 
 short-circuits – between s.-c. place and the ground 
 interruption – between places on both sides of the interruption 

Similarly for the additional impedance. 
Sources always by means of impedances to the ground. 
 

    
 



Multiple unbalances in ES 
 

Single-phase-to-ground short-circuit in phase B, reference phase A 

    

















































 

B

B
2

B
2

2

ABC
1

120

Î
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Îâ
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Î
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Note: TRF ratio (1ph) 
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â
1

â
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It is valid for reference phase B 
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â1â
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â1â

3
1ITI

 

 



Two simultaneous single-phase-to-ground short-circuits in different ES 
places 
 

    
 

More than 2 faults → sequence diagrams interconnection is complicated → 
rather calculation in phases. 



Short-circuit impedance matrix 
 

 short-circuit is replaces by two sources with U[k] voltage and the 
opposite orientation 

 U[k] voltage size equals to voltage value in the node k just before the 
fault 

 superposition principle 

 
 AES (active ES) => ES steady-state just before the short-circuit, 

sources modelled by an ideal voltage source and generator reactance 
 PES (passive ES) => without sources: fault state, generators replaced 

only by sub-transient reactance against the ground 
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ES simplified diagram 
a) corresponding with node admittance matrix 
b) corresponding with short-circuit admittance matrix 
 



All node currents are zero except the short-circuit place, here an ideal 
voltage source → short-circuit admittance matrix. 

 

    UYI k  

 

















































n

k

1

kk

Û
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Conversion to short-circuit impedance matrix 
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ẐẐ

Û
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Short-circuit current 
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)k,k(Ẑ  short-circuit impedance in the node k 
 

Voltage in any node 
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Current in a branch 
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ijẐ   impedance of the branch between the nodes i and j 
 

Real node voltages and real branch currents during short-circuits are: 
fault = AES + PES 
Iij

k = I(ij) + Iij   Uj
k = U(j) + Uj  

 

where: current in the branch between the nodes i and j, node j voltage 
Iij

k, Uj
k  during short-circuit 

I(ij), U(j) just before the short-circuit origin 
Iij, Uj  self fault state 



Short-circuit currents impacts 
 

Mechanical impacts 
Influence mainly at tightly placed stiff conductors, supporting insulators, 
disconnectors, construction elements,… 
Forces frequency 2f at AC → dynamic strain. 
 

Force on the conductor in magnetic field 
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   α – angle between mag. induction vector and the conductor axis  
(current direction) 

 

Magnetic field intensity in the distance a from the conductor 

  )m/A(
a2

IH


  
 



2 parallel conductors → force perpendicular to the conductor axis 
(sin α = 1) → it is the biggest 
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The highest force corresponds to the highest immediate current value 
→ peak short-circuit current Ikm (1st magnitude after s.-c. origin) 
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   κ – peak coefficient according to grid type (κLV = 1,8; κHV = 1,7) 
    theoretical range κ = 1 ÷ 2 
   Tk – time constant of equivalent short-circuit loop (Le/Re) 
      i.e. for DC component of short-circuit current 
   0kI   - initial sub-transient short-circuit current 
 

Real value differs according to the short-circuit origin moment. 
AC component decreasing slower than for DC therefore neglected. 
 



Max. instantaneous force on the conductor length unit 
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   k1 – conductor shape coefficient 

k2 – conductors configuration and currents phase shift 
coefficient 

a – conductors distance 
 



 



Heat impacts 
Key for dimensioning mainly at freely placed conductors. 
They are given by heat accumulation influenced by time-changing current 
during short-circuit time tk (adiabatic phenomenon). 
 

Heat produced in conductors 
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Thermal equivalent current – current RMS value which has the same 
heating effect in the short-circuit duration time as the real short-circuit 
current 
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Calculation according to ke coefficient as kI   multiple 
keke IkI   

 

Coefficient ke 

S.-c. in ES 
 

Short-circuit 
duration time 

tk (s) 

S.-c. on 
generator 
terminals 

HV, MV LV 

pod  0,05 1,70 1,60 1,50 
0,05 – 0,1 1,60 1,50 1,20 
0,1 – 0,2 1,55 1,40 1,10 
0,2 – 1,0 1,50 1,30 1,05 
1,0 – 3,0 1,30 1,10 1,00 
nad  3,0 1,15 1,00 1,00 

 


