Calculation of voltage in a small electrical network

Electrical DC network is shown (Fig. 1). Calculate the voltage in the nodes 2, 3 and 4. Calculate the node current in the balance node 1 . The loads in the nodes, the balance node voltage and resistances of each branch are shown in Fig. 1.
Calculate it: 1) with node voltage method NVM
2) with gradual simplification method

Fig. 1

1. Node voltage method (NVM)

First admittance matrix elements can be calculated based on the knowledge of each element parameters and the system topology. The principle is following:

Fig. 2: Model of a system branch

Node current in node k :

$$
\begin{equation*}
\hat{\mathrm{I}}_{\mathrm{k}}+\sum_{\mathrm{m} \neq \mathrm{k}} \hat{\mathrm{I}}_{\mathrm{km}}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\mathrm{I}}_{\mathrm{k}}=-\sum_{\mathrm{m} \neq \mathrm{k}} \hat{\mathrm{I}}_{\mathrm{km}}=-\sum_{\mathrm{m} \neq \mathrm{k}} \hat{\mathrm{Y}}_{\mathrm{km}} \cdot\left(\hat{\mathrm{U}}_{\mathrm{k}}-\hat{\mathrm{U}}_{\mathrm{m}}\right)=-\sum_{\mathrm{m} \neq \mathrm{k}} \hat{\mathrm{Y}}_{\mathrm{km}} \cdot \hat{\mathrm{U}}_{\mathrm{k}}+\sum_{\mathrm{m} \neq \mathrm{k}} \hat{\mathrm{Y}}_{\mathrm{km}} \cdot \hat{\mathrm{U}}_{\mathrm{m}} \tag{2}
\end{equation*}
$$

Previous equations are matrix multiplications where $\hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{k})}$ is nodal self-admittance (diagonal element) and $\hat{Y}_{(\mathrm{k}, \mathrm{m})}$ is between nodes admittance (non-diagonal elements).

$$
\begin{equation*}
\hat{\mathrm{I}}_{\mathrm{k}}=-\hat{\mathrm{U}}_{\mathrm{k}} \cdot \hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{k})}+\sum_{\mathrm{m} \neq \mathrm{k}} \hat{\mathrm{U}}_{\mathrm{m}} \cdot \hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{~m})} \tag{3}
\end{equation*}
$$

where $\hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{k})}, \hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{m})}$ are the system admittance matrix elements.
Diagonal elements are negative and non-diagonal elements are positive.
Because of 4 nodes - admittance matrix type is 4×4.

The first element Y_{11} is calculated as the negative sum of all admittances connected to the node 1.

$$
\begin{equation*}
Y_{11}=-\left(Y_{12}+Y_{14}\right)=-\left(\frac{1}{2}+\frac{1}{2}\right)=-1 \tag{4}
\end{equation*}
$$

The second element Y_{12} is the same as Y_{21} and it is calculated as the sum of admittances between the nodes 1 and 2 :

$$
\begin{equation*}
Y_{12}=Y_{21}=\frac{1}{2} \tag{5}
\end{equation*}
$$

The next element Y_{13} is the same as Y_{31} and since the nodes 1 and 3 are not connected, the admittance is equal to 0 . And further:

$$
\begin{align*}
& Y_{22}=-\left(Y_{12}+Y_{14}+Y_{24}\right)=-\frac{4}{3} \tag{6}\\
& Y_{33}=-\left(Y_{23}+Y_{34}\right)=-\frac{4}{3} \tag{7}\\
& Y_{44}=-\left(Y_{14}+Y_{24}+Y_{34}\right)=-2 \tag{8}\\
& Y_{14}=Y_{14}=\frac{1}{2} \tag{9}\\
& Y_{23}=Y_{32}=\frac{1}{3} \tag{10}\\
& Y_{24}=Y_{42}=\frac{1}{2} \tag{11}\\
& Y_{34}=Y_{43}=1 \tag{12}
\end{align*}
$$

Admittance matrix Y looks like:

$$
[Y]=\left(\begin{array}{llll}
Y_{11} & Y_{12} & Y_{13} & Y_{14} \tag{13}\\
Y_{21} & Y_{22} & Y_{23} & Y_{24} \\
Y_{31} & Y_{32} & Y_{33} & Y_{34} \\
Y_{41} & Y_{42} & Y_{43} & Y_{44}
\end{array}\right)=\left(\begin{array}{cccc}
-1 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & -\frac{4}{3} & \frac{1}{3} & \frac{1}{2} \\
0 & \frac{1}{3} & -\frac{4}{3} & 1 \\
\frac{1}{2} & \frac{1}{2} & 1 & -2
\end{array}\right)
$$

First we do the general derivation for the specified network. The matrix equation is: (current is equal to product of admittance and voltage)

$$
\begin{equation*}
[\mathrm{I}]=[\mathrm{Y}] \cdot[\mathrm{U}] \tag{14}
\end{equation*}
$$

To calculate voltage it is necessary to multiply currents by the inverse matrix $[\mathrm{Y}]^{-1}$ from the left. This is not possible because $[\mathrm{Y}]$ is a singular matrix ($\operatorname{det} \mathrm{Y}=0$). Therefore the matrix and column vectors are divided to sub-matrixes for known and unknown quantities:

$$
\left[\begin{array}{l}
{\left[\mathrm{I}_{1}\right]} \tag{15}\\
{\left[\mathrm{I}_{\mathrm{odb}}\right]}
\end{array}\right]=\left[\begin{array}{ll}
{\left[\mathrm{Y}_{1}\right]} & {\left[\mathrm{Y}_{2}\right]} \\
{\left[\mathrm{Y}_{3}\right]} & {\left[\mathrm{Y}_{4}\right]}
\end{array}\right] \cdot\left[\begin{array}{l}
{\left[\mathrm{U}_{1}\right]} \\
{\left[\mathrm{U}_{\mathrm{odb}}\right]}
\end{array}\right]
$$

where:
[I_{1}] \qquad unknown current value in the node 1
[U_{1}] \qquad known voltage value in the node 1
[$\mathrm{I}_{\text {odb }}$] known load current values in calculated nodes
[$\mathrm{U}_{\text {odb }}$] \qquad unknown voltage values in calculated nodes

Dimensions of matrixes:

$$
\begin{aligned}
& {\left[\mathrm{I}_{1}\right] \in R^{1 \times 1},\left[\mathrm{U}_{1}\right] \in R^{1 \times 1},\left[\mathrm{I}_{\mathrm{odb}}\right] \in R^{3 \times 1},\left[\mathrm{U}_{\text {odb }}\right] \in R^{3 \times 1}} \\
& {\left[\mathrm{Y}_{1}\right] \in R^{1 \times 1},\left[\mathrm{Y}_{2}\right] \in R^{1 \times 3},\left[\mathrm{Y}_{3}\right] \in R^{3 \times 1},\left[\mathrm{Y}_{4}\right] \in R^{3 \times 3}}
\end{aligned}
$$

After few modifications and particular multiplications:

$$
\begin{align*}
& {\left[\mathbf{I}_{\mathbf{1}}\right]=\left[\mathbf{Y}_{\mathbf{1}}\right] \cdot\left[\mathrm{U}_{\mathbf{1}}\right]+\left[\mathbf{Y}_{2}\right] \cdot\left[\mathrm{U}_{\text {odb }}\right]} \tag{17}\\
& {\left[\mathrm{I}_{\mathrm{odb}}\right]=\left[\mathrm{Y}_{3}\right] \cdot\left[\mathrm{U}_{1}\right]+\left[\mathrm{Y}_{4}\right] \cdot\left[\mathrm{U}_{\mathrm{odb}}\right]} \tag{18}\\
& {\left[\mathrm{Y}_{4}\right]^{-1} \cdot\left[\mathrm{I}_{\mathrm{odb}}\right]=\left[\mathrm{Y}_{4}\right]^{-1} \cdot\left[\mathrm{Y}_{3}\right] \cdot\left[\mathrm{U}_{1}\right]+\left[\mathrm{U}_{\mathrm{odb}}\right]} \tag{19}\\
& {\left[\mathbf{U}_{\mathbf{o d b}}\right]=\left[\mathbf{Y}_{4}\right]^{-1} \cdot\left[\mathbf{I}_{\mathbf{o d b}}\right]-\left[\mathbf{Y}_{4}\right]^{-1} \cdot\left[\mathbf{Y}_{\mathbf{3}}\right] \cdot\left[\mathrm{U}_{\mathbf{1}}\right]} \tag{20}
\end{align*}
$$

First there are calculated unknown voltage values from matrix equation (20) and then there is calculated the current value from matrix equation (17)

The final voltages in nodes 2, 3 and 4:

$$
\left[\mathrm{U}_{\text {odb }}\right]=\left[\begin{array}{l}
U_{2} \tag{21}\\
U_{3} \\
U_{4}
\end{array}\right]=\left[\begin{array}{l}
199,375 \\
181,563 \\
190,625
\end{array}\right](V)
$$

The current I_{1} is (based on equation 17):

$$
\begin{equation*}
\mathrm{I}_{1}=-45 \mathrm{~A} \tag{22}
\end{equation*}
$$

A negative value is for delivery (if all node currents have the same orientation). Currents between individual nodes are:

$$
\begin{align*}
& \mathrm{I}_{12}=\left(\mathrm{U}_{1}-\mathrm{U}_{2}\right) \cdot \mathrm{Y}_{12}=20,31 \mathrm{~A} \tag{23}\\
& \mathrm{I}_{14}=\left(\mathrm{U}_{1}-\mathrm{U}_{4}\right) \cdot \mathrm{Y}_{14}=24,69 \mathrm{~A} \tag{24}\\
& \mathrm{I}_{24}=\left(\mathrm{U}_{2}-\mathrm{U}_{4}\right) \cdot \mathrm{Y}_{24}=4,38 \mathrm{~A} \tag{25}\\
& \mathrm{I}_{23}=\left(\mathrm{U}_{2}-\mathrm{U}_{3}\right) \cdot \mathrm{Y}_{23}=5,94 \mathrm{~A} \tag{26}\\
& \mathrm{I}_{43}=\left(\mathrm{U}_{4}-\mathrm{U}_{3}\right) \cdot \mathrm{Y}_{34}=9,06 \mathrm{~A} \tag{27}
\end{align*}
$$

2. Gradual simplification method

For further simplifications it is needed to remove Δ between the nodes 1,2 and 4 (by transfiguration $\mathrm{D} \rightarrow \mathrm{Y}$):

Fig. 3: Power system with transfiguration
The resistances recalculations:

$$
\begin{align*}
& \mathrm{R}_{1 \mathrm{~S}}=\frac{\mathrm{R}_{12} \cdot \mathrm{R}_{14}}{\mathrm{R}_{12}+\mathrm{R}_{14}+\mathrm{R}_{24}}=\frac{2}{3} \Omega \tag{28}\\
& \mathrm{R}_{2 \mathrm{~S}}=\frac{\mathrm{R}_{12} \cdot \mathrm{R}_{24}}{\mathrm{R}_{12}+\mathrm{R}_{14}+\mathrm{R}_{24}}=\frac{2}{3} \Omega \tag{29}\\
& \mathrm{R}_{4 \mathrm{~S}}=\frac{\mathrm{R}_{14} \cdot \mathrm{R}_{24}}{\mathrm{R}_{12}+\mathrm{R}_{14}+\mathrm{R}_{24}}=\frac{2}{3} \Omega \tag{30}
\end{align*}
$$

The power network can be redrawn:

Fig. 4: Redrawn power network

The current reduction from nodes 2 and 4 is made further. This is done by distribution of loads to neighbouring nodes based on current divider principle. Currents I_{2} and I_{4} are distributed to the nodes S and 3 as follows:

$$
\begin{align*}
& I_{23}=\frac{R_{2 S}}{R_{2 S}+R_{23}} \cdot I_{2}=\frac{20}{11} A \tag{31}\\
& I_{2 S}=\frac{R_{23}}{R_{25}+R_{23}} \cdot I_{2}=\frac{90}{11} \mathrm{~A} \tag{32}\\
& I_{43}=\frac{R_{4 \mathrm{~S}}}{R_{4 \mathrm{~S}}+R_{34}} \cdot I_{4}=8 \mathrm{~A} \tag{33}\\
& I_{4 \mathrm{~S}}=\frac{R_{34}}{R_{4 \mathrm{~S}}+R_{34}} \cdot I_{4}=12 \mathrm{~A} \tag{34}
\end{align*}
$$

The resulting nodal currents in the nodes S and 3 are:

$$
\begin{align*}
& \mathrm{I}_{\mathrm{S}}=\mathrm{I}_{2 \mathrm{~S}}+\mathrm{I}_{4 \mathrm{~S}}=\frac{222}{11} \mathrm{~A} \tag{35}\\
& \mathrm{I}_{3}=\mathrm{I}_{23}+\mathrm{I}_{43}+\mathrm{I}_{3}=\frac{273}{11} \mathrm{~A} \tag{35}
\end{align*}
$$

Fig. 5: Network after reducing the loads in the nodes 2 and 4
Simplifying of parts $S-2-3$ and $S-4-3$ (this parts are serial summed) and then a parallel combination:

$$
\begin{align*}
& \mathrm{R}_{\mathrm{S} 3 \mathrm{a}}=\mathrm{R}_{2 \mathrm{~S}}+\mathrm{R}_{23} \text { and } \mathrm{R}_{\mathrm{S} 3 \mathrm{~b}}=\mathrm{R}_{4 \mathrm{~S}}+\mathrm{R}_{43} \tag{36}\\
& \mathrm{R}_{\mathrm{S} 3}=\frac{R_{S 3 a} \cdot R_{S 3 b}}{R_{S 3 a}+R_{S 3 b}}=\frac{55}{48} \Omega \tag{37}
\end{align*}
$$

Current I_{1} :

$$
\begin{equation*}
\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{3}+\mathrm{I}_{4}=10+15+20=45 \mathrm{~A} \tag{38}
\end{equation*}
$$

The whole network is simplified now as a radial network supplied from one side (Fig.6). The voltages in the nodes S and 3 are:

Fig. 6: Radial network supplied from one side

$$
\begin{align*}
& \mathrm{U}_{\mathrm{S}}=\mathrm{U}_{1}-\mathrm{I}_{1} \cdot \mathrm{R}_{1 \mathrm{~S}}=240-45 \cdot \frac{2}{3}=210 \mathrm{~V} \tag{39}\\
& \mathrm{U}_{3}=\mathrm{U}_{\mathrm{S}}-\mathrm{I}_{\mathrm{S} 3} \cdot \mathrm{R}_{\mathrm{S} 3}=210-\frac{273}{11} \cdot \frac{55}{48}=181,56 \mathrm{~V} \tag{39}
\end{align*}
$$

The voltages in the nodes 2, 3 and 4 are calculated now. The calculation is made for the same voltages of both feeders U_{S} (see Fig.4). First we calculate the currents $\mathrm{I}_{\mathrm{S} 1}$ and $\mathrm{I}_{\mathrm{S} 2}$ by means of the current moments and then voltages are calculated based on these currents.

Fig. 7: The power network supplied from both sides

$$
\begin{align*}
& \mathrm{I}_{\mathrm{S} 1}=\frac{\mathrm{R}_{4 \mathrm{~S}} \cdot \mathrm{I}_{4}+\left(\mathrm{R}_{4 \mathrm{~S}}+\mathrm{R}_{43}\right) \cdot \mathrm{I}_{3}+\left(\mathrm{R}_{4 \mathrm{~S}}+\mathrm{R}_{43}+\mathrm{R}_{23}\right) \cdot \mathrm{I}_{2}}{\mathrm{R}_{4 \mathrm{~S}}+\mathrm{R}_{43}+\mathrm{R}_{23}+\mathrm{R}_{1 \mathrm{~S}}}=15,94 \mathrm{~A} \tag{40}\\
& \mathrm{I}_{\mathrm{S} 2}=\frac{\mathrm{R}_{1 \mathrm{~S}} \cdot \mathrm{I}_{2}+\left(\mathrm{R}_{1 \mathrm{~S}}+\mathrm{R}_{23}\right) \cdot \mathrm{I}_{3}+\left(\mathrm{R}_{1 \mathrm{~S}}+\mathrm{R}_{23}+\mathrm{R}_{43}\right) \cdot \mathrm{I}_{4}}{\mathrm{R}_{4 \mathrm{~S}}+\mathrm{R}_{43}+\mathrm{R}_{23}+\mathrm{R}_{1 \mathrm{~S}}}=29,06 \mathrm{~A} \tag{41}\\
& \mathrm{U}_{2}=\mathrm{U}_{\mathrm{S}}-\mathrm{I}_{\mathrm{S} 1} \cdot \mathrm{R}_{1 \mathrm{~S}}=210-15,94 \cdot \frac{2}{3}=199,37 \mathrm{~V} \tag{42}\\
& \mathrm{U}_{4}=\mathrm{U}_{\mathrm{S}}-\mathrm{I}_{\mathrm{S} 2} \cdot \mathrm{R}_{4 \mathrm{~S}}=210-29,06 \cdot \frac{2}{3}=190,63 \mathrm{~V} \tag{42}
\end{align*}
$$

