Three-phase symmetrical transmission system in Fig. 1 delivers three-phase power $\mathrm{P}=100 \mathrm{MW}$ with $\cos \varphi=1$ at the end to a large power grid. Calculate the transmission angle and check the system steady-state stability. Neglect resistances and shunt admittances of elements in the system (generator synchronous reactance x_{d} respects saturation and voltage control).

Fig. 1: Circuit diagram
Calculation in relative values considering base values:
$>$ base power
$\mathrm{S}_{\mathrm{v}}=100 \mathrm{MVA}$
$>$ base voltage
$\mathrm{U}_{\mathrm{v}}=220 \mathrm{kV}$ (after T2)

Calculation to relative values:
$>$ generator

$$
x_{g}=\frac{x_{d}}{100} \cdot \frac{S_{v}}{S_{g}} \cdot\left(\frac{U_{g}}{U_{v}}\right)^{2} \cdot\left(\frac{220}{10,5}\right)^{2}=\frac{160}{100} \cdot \frac{100}{125} \cdot\left(\frac{10,5}{220}\right)^{2} \cdot\left(\frac{220}{10,5}\right)^{2}=1,28
$$

transformer T1

$$
\mathrm{x}_{\mathrm{T} 1}=\frac{\mathrm{u}_{\mathrm{k}}}{100} \cdot \frac{\mathrm{~S}_{\mathrm{v}}}{\mathrm{~S}_{\mathrm{T} 1}} \cdot\left(\frac{\mathrm{U}_{\mathrm{T} 1}}{\mathrm{U}_{\mathrm{v}}}\right)^{2} \cdot\left(\frac{220}{10,5}\right)^{2}=\frac{12}{100} \cdot \frac{100}{125} \cdot\left(\frac{10,5}{220}\right)^{2} \cdot\left(\frac{220}{10,5}\right)^{2}=0,096
$$

transformer T2

$$
\mathrm{x}_{\mathrm{T} 2}=\frac{\mathrm{u}_{\mathrm{k}}}{100} \cdot \frac{\mathrm{~S}_{\mathrm{v}}}{\mathrm{~S}_{\mathrm{T} 2}} \cdot\left(\frac{\mathrm{U}_{\mathrm{T} 2}}{\mathrm{U}_{\mathrm{v}}}\right)^{2} \cdot\left(\frac{220}{400}\right)^{2}=\frac{13}{100} \cdot \frac{100}{125} \cdot\left(\frac{400}{220}\right)^{2} \cdot\left(\frac{220}{400}\right)^{2}=0,104
$$

power line

$$
\mathrm{x}_{\mathrm{v}}=\mathrm{x}_{\mathrm{ved}} \cdot 1 \cdot \frac{1}{2} \cdot \frac{\mathrm{~S}_{\mathrm{v}}}{\mathrm{U}_{\mathrm{v}}^{2}}=\frac{1}{2} \cdot 0,42.200 \cdot \frac{100.10^{6}}{\left(220.10^{3}\right)^{2}}=0,087
$$

Total reactance:

$$
\mathrm{x}_{\mathrm{c}}=\mathrm{x}_{\mathrm{g}}+\mathrm{x}_{\mathrm{T} 1}+\mathrm{x}_{\mathrm{v}}+\mathrm{x}_{\mathrm{T} 2}=1,567
$$

Further we use the phasor diagram in Fig. 2 where we consider the load $\mathrm{P}=100 \mathrm{MW}$ with $\cos \varphi=1$ at the end $\left(\rightarrow \mathrm{P}=\mathrm{S}_{\mathrm{V}}\right)$. Voltage and current phasor $(\mathrm{i}=1$, not entirely accurate) are in phase at the end of transmission.

Fig. 2: Phasor diagram
We can see in Fig. 2 that the generator has the biggest influence on voltage phase shift. We must calculate first the voltage u to calculate the angle β. From triangle $0,1,2$ we can calculate voltage u and angle $\beta_{T 2}$ because:

$$
\Delta u_{\mathrm{T} 2}=\mathrm{x}_{\mathrm{T} 2} . \dot{i}=0,104
$$

Voltage drops on individual elements:

$$
\begin{aligned}
& \Delta u_{\mathrm{v}}=\mathrm{x}_{\mathrm{v}} \cdot \mathrm{i}=0,087 \\
& \Delta \mathrm{u}_{\mathrm{T} 1}=\mathrm{x}_{\mathrm{T} 1} \cdot \mathrm{i}=0,096 \\
& \Delta \mathrm{u}_{\mathrm{g}}=\mathrm{x}_{\mathrm{g}} \cdot \mathrm{i}=1,28
\end{aligned}
$$

Further:

$$
\mathrm{u}=\sqrt{\mathrm{u}_{\mathrm{v}}^{2}-\Delta \mathrm{u}_{\mathrm{T} 2}^{2}}=0,995
$$

Individual transmission angles according to goniometrical functions:

$$
\begin{aligned}
& \sin \beta_{\mathrm{T} 2}= \frac{\Delta \mathrm{u}_{\mathrm{T} 2}}{\mathrm{u}_{\mathrm{v}}}=\frac{0,104}{1}=0,104 \\
& \rightarrow \beta_{\mathrm{T} 2}=\underline{5,97^{\circ}} \\
& \operatorname{tg}\left(\beta_{\mathrm{T} 2}\right.\left.+\beta_{\mathrm{v}}\right)=\frac{\Delta \mathrm{u}_{\mathrm{v}}+\Delta \mathrm{u}_{\mathrm{T} 2}}{\mathrm{u}}=\frac{0,087+0,104}{0,995}=0,192 \\
& \rightarrow \beta_{\mathrm{T} 2}+\beta_{\mathrm{v}}=\underline{10,871^{\circ}} \quad \rightarrow \beta_{\mathrm{v}}=\left(\beta_{\mathrm{T} 2}+\beta_{\mathrm{v}}\right)-\beta_{\mathrm{T} 2}=\underline{4,901^{\circ}} \\
& \operatorname{tg}\left(\beta_{\mathrm{T} 1}\right.\left.+\beta_{\mathrm{T} 2}+\beta_{\mathrm{v}}\right)=\frac{\Delta \mathrm{u}_{\mathrm{T} 2}+\Delta \mathrm{u}_{\mathrm{ved}}+\Delta \mathrm{u}_{\mathrm{T} 1}}{\mathrm{u}}=\frac{0,104+0,087+0,096}{0,995}=0,287 \\
& \rightarrow \beta_{\mathrm{T} 1}+\beta_{\mathrm{T} 2}+\beta_{\mathrm{v}}=\underline{16,096^{\circ}} \rightarrow \beta_{\mathrm{T} 1}=\left(\beta_{\mathrm{T} 1}+\beta_{\mathrm{T} 2}+\beta_{\mathrm{v}}\right)-\left(\beta_{\mathrm{T} 2}+\beta_{\mathrm{v}}\right)=\underline{5,225^{\circ}} \\
& \operatorname{tg}\left(\beta_{\mathrm{g}}+\beta_{\mathrm{T} 1}+\beta_{\mathrm{T} 2}+\beta_{\mathrm{v}}\right)=\frac{\Delta \mathrm{u}_{\mathrm{g}}+\Delta \mathrm{u}_{\mathrm{T} 1}+\Delta \mathrm{u}_{\mathrm{ved}}+\Delta \mathrm{u}_{\mathrm{T} 2}}{\mathrm{u}}=\frac{0,104+0,087+0,096+1,28}{0,995}=1,5755 \\
& \rightarrow \beta_{\mathrm{g}}+\beta_{\mathrm{T} 1}+\beta_{\mathrm{T} 2}+\beta_{\mathrm{v}}=\underline{57,597^{\circ}} \rightarrow \beta_{\mathrm{g}}=\left(\beta_{\mathrm{g}}+\beta_{\mathrm{T} 1}+\beta_{\mathrm{T} 2}+\beta_{\mathrm{v}}\right)-\left(\beta_{\mathrm{T} 1}+\beta_{\mathrm{T} 2}+\beta_{\mathrm{v}}\right)=\underline{41,5^{\circ}}
\end{aligned}
$$

Desired total transmission angle $\beta=\beta_{\mathrm{g}}+\beta_{\mathrm{T} 1}+\beta_{\mathrm{T} 2}+\beta_{\mathrm{v}}=\underline{57,597^{\circ}}$.
For steady-state stability area:

$$
\beta<\beta_{\max }=90^{\circ}
$$

It is valid, the transmission is steady-state stable.
Let us verify by means of the simplified steady-state stability equation. According to Fig. 2:

$$
\mathrm{u}_{\mathrm{if}}=\frac{\mathrm{u}}{\cos \beta}=\frac{0,995}{\cos 57,597^{\circ}}=\underline{1,857}
$$

Inserting to the equation

$$
\mathrm{p}=\frac{\mathrm{u}_{\mathrm{if}} \cdot \mathrm{u}}{\mathrm{x}_{\mathrm{c}}} \sin \beta=\frac{1,859 \cdot 0,995}{1,567} \sin 57,597^{\circ} \approx \underline{1}
$$

than $\mathrm{P}=\mathrm{p} \cdot \mathrm{S}_{\mathrm{v}}=1.100=\underline{100 \mathrm{MW}}$ with $\cos \varphi=1$.
The maximal power which could be transmitted:

$$
\mathrm{p}_{\max }=\frac{\mathrm{u}_{\mathrm{if}} \cdot \mathrm{u}}{\mathrm{x}_{\mathrm{c}}} \sin 90^{\circ}=\frac{1,857 \cdot 0,995}{1,567} \sin 90^{\circ}=\underline{1,18} ; \quad \mathrm{P}_{\max }=\mathrm{p}_{\max } \cdot \mathrm{S}_{\mathrm{v}}=1,18.100=\underline{118 \mathrm{MW}}
$$

Nominal generator active power:

$$
P_{g}=S_{g} \cdot \cos \varphi_{\mathrm{n}}=125 \cdot 0,9=\underline{112,5 \mathrm{MW}}
$$

