Power Plants AlM15ENY

Lecture No. 2

Jan Špetlík
spetlij@fel.cvut.cz - subject in e-mail „ENY"

Department of Power Engineering, Faculty of Eelectrical Engineering CTU, Technická 2, 16627 Praha 6

Example No. 1: Compute initial three phase short circuit current I"k3 in auxiliary. Neglect the contribution of the current of motoric load, take into consideration HV system as an infinity bus

$$
U_{s}=117 \mathrm{kV} \quad I_{V}=\frac{S_{V}}{U_{V} \cdot \sqrt{3}}=\frac{63}{10,5 \cdot \sqrt{3}}=3,46 \mathrm{kA}
$$

$$
\square
$$

$$
10,5 / 121 \mathrm{kV}
$$

$$
\begin{array}{ll}
\text { MVA } & I_{k 3 T}^{\prime \prime}=\frac{U_{s}}{U_{V}} \cdot p \cdot \frac{1}{x_{T}} \cdot I_{V}= \\
\hline
\end{array}
$$

$$
=\frac{117}{10,5} \cdot \frac{10,5}{121} \cdot \frac{1}{0,1} \cdot 3,46 \mathrm{kA}
$$

$$
=33,4 \mathrm{kA}
$$

$S_{n G}=63 \mathrm{MVA}$
$U_{G}=10,5 \mathrm{kV}$
$x_{d}^{\prime \prime}=15 \%$

$$
I_{k 3 G}^{\prime \prime}=\frac{1}{x_{d}^{\prime \prime}} \cdot I_{V}=\frac{1}{0,15} \cdot 3,46 \mathrm{kA}=23,1 \mathrm{kA}
$$

$$
I_{k 3}^{\prime \prime}=I_{k 3 T}^{\prime \prime}+I_{k 3 G}^{\prime \prime}=33,4+23,1=56,5 \mathrm{kA}
$$

Initial short circuit current $56,5 \mathrm{kA}$ in auxiliary is extremely high if we take into consideration normal operating current, in this case hundreds of amperes!

Example No. 2: Compute earth connection fault current in auxiliary system.
Total length of the MV cable network is 20 km . Cable type used is $1 \times 3 \times 6$-AYKCY 70/16. Auxiliary network is operated as IT(r) 6,3 kV

The sequence currents are equal in the case of single phase fault:
$\hat{I}_{1}=\hat{I}_{2}=\hat{I}_{0}$
Longitudial parameters are neglected, we take into consideration only capacitive susceptance

$$
\hat{I}_{1}=\frac{\hat{U}_{1}}{-\frac{j}{\omega \cdot C_{/ l} \cdot l}}=\frac{\hat{U}_{A}}{-\frac{j}{\omega \cdot C_{\mu} \cdot l}}=j \cdot \omega \cdot C_{/ l} l \cdot \hat{U}_{A} \quad \hat{I}_{A}=\hat{I}_{1}+\hat{I}_{2}+\hat{I}_{0}=3 \cdot \hat{I}_{1}
$$

Correspondning fault current for the capacity $C_{/ /}=0,85 \cdot 10^{-6} \mathrm{~F}_{\mathrm{km}}{ }^{-1}$
$I_{A}=3 \cdot \omega \cdot C_{/ l} \cdot l \cdot U_{A}=\sqrt{3} \cdot \omega \cdot C_{/ l} I \cdot U=\sqrt{3} \cdot 100 \cdot \pi \cdot 0,85 \cdot 10^{-6} \cdot 20 \cdot 6,3 \cdot 10^{3} \mathrm{~A}$
$I_{A}=58,3 \mathrm{~A}$
This earth connection current can be dangerous for the generator!
Manufacturers are commonly declaring cca 10 A as a safe value.

Auxiliary Topology

Multi-unit power plant - basic supply scheme

- Unit auxiliary (VSB)
- Common auxiliary (SVS)
unit transformer

auxiliary transformer

Auxiliary Scheme Examples

Conventional power plant $200+4 \times 110$ MW

Auxiliary Scheme Examples

Conventional power plant, double-unit 2x200 MW

Auxiliary Scheme Examples

Conventional power plant, double unit 2x40 MW, Common aux. + diesel gensets

Auxiliary Scheme Examples

Conventional Power Plant, 300 MW

Auxiliary Scheme Examples

Typical CHP scheme with MV outlets to distribution network

Auxiliary Scheme Examples

Alternative CHP scheme with MV outlets to distribution network with higher power output, short circuit currents are suppressed by reactors

Auxiliary Scheme Examples

6x60 MW + CHP, Power Plant Opatovice

Auxiliary Scheme Examples

Dukovany NPP Auxiliary

4400 kV

Auxiliary Scheme Examples

Temelin NPP Auxiliary

Auxiliary Scheme Examples

Pumped-storage Hydropower Plant Dalešice 4x105MW Auxiliary

Auxiliary Scheme Examples

Summary:
Start-up source:

Operating source:

Auxiliary Scheme Examples

Back-up source:

Emergency source (diesel + UPS)

Auxiliary Source Dimensioning

Operating, start-up resp. back-up power need is calculated from total installed power of the consumption as

$$
\sum S_{P}=\frac{\sum_{i} P_{n i}}{\cos \varphi_{n}} \cdot \beta
$$

with loading factor

$$
\beta=\frac{k_{V} \cdot k_{S}}{\eta_{m} \cdot \eta_{S}}
$$

factor of contemporary factor of workload

$$
k_{S}=\frac{\sum_{i}^{\text {power }} P_{S i}}{\sum_{i} P_{n i}} \quad k_{V}=\frac{\sum_{i} P_{i}}{\sum_{i} P_{S i}}
$$

$\eta_{m} \quad$ Mean efficiency of appliances under specified workload
$\eta_{S} \quad$ Efficiency of the supplying grid

Auxiliary Source Dimensioning

Rated (nominal) power of a supplying source must be:

$$
S_{Z} \geq \sum S_{P}
$$

Other requirements:

- Electric machines' terminal voltage has to be acc. ČSN 381120 in tolerance Vn $\pm 5 \%$
- min. voltage drop in the case of the biggest appliance start up should not be under $0,85 \mathrm{Vn}$, must not be under $0,8 \mathrm{Un}$
- min. voltage drop in the case of appliances' group start up must not be under 0,65 Un,
In addition to that, for back-ups:
- One back-up trf for 2 units, two for more than 2
- Every back-up trf. has to ensure full operation of the first unit + no-load operation of the second + 50\% common aux. + (in the case of NPP) shut down the second unit

Auxiliary Source Dimensioning

Power source dimensioning, checkings:
Network voltages + determination of trf. ratio:

- In the case of normal operation
- In the case of the biggest appliance start up
- In the case of appliances' group(s) start up

At the same time, protection set-up checking for extraordinary operation states is necessary!

Determination of Transformer Ratio

Generally:

$\hat{u}_{S}=j .\left(x_{S}+x_{T}\right) \hat{i}_{V S}+\hat{u}_{V S}$
Neglecting voltage difference caused by real part of the current we obtain:

$$
u_{S}=\left(x_{S}+x_{T}\right) \cdot i_{V S j}+u_{V S}
$$

$$
\begin{aligned}
& \frac{U_{S}}{p \cdot U_{V}}=\left[\frac{S_{V}}{S_{k s}} \cdot\left(\frac{U_{S}}{U_{V}}\right)^{2} \cdot \frac{1}{p^{2}}+x_{T}\right] \cdot i_{V S j}+u_{V S} \\
& 0=\left(x_{T} \cdot i_{V S j}+u_{V S}\right) \cdot p^{2}-p \cdot \frac{U_{S}}{U_{V}}+\frac{S_{V}}{S_{k s}} \cdot\left(\frac{U_{S}}{U_{V}}\right)^{2} \cdot i_{V S j}
\end{aligned}
$$

Determination of Transformer Ratio

We gain p as a solution of following quadratic equation:
$0=\left(x_{T} \cdot i_{V S j}+u_{V S}\right) \cdot p^{2}-p \cdot \frac{U_{S}}{U_{V}}+\frac{S_{V}}{S_{k s}} \cdot\left(\frac{U_{S}}{U_{V}}\right)^{2} \cdot i_{V S j}$
Assuming that the known variables are: $i_{V S j}, U_{S}, S_{k s}, x_{T}$
And required voltage is: $u_{V S}$
Appropriate ratio (tap) has to be determined for design operation states (unloaded, operation, the biggest appliance, start up etc.) Finally, the necessary voltage regulation range is determined (tap changer requirements)

The Biggest Appliance Start-up

The source has to be strong enough, in other words satisfy with its minimum short circuit power:

Total load will be:

$$
x_{Z}=\frac{x_{V S} \cdot x_{M}}{x_{V S}+x_{M}}
$$

where X_{M} is start-up motor reactance
If base apparent power is trf. rated power: $S_{n T}$

$$
x_{M}=\frac{1}{i^{Z M}} \cdot \frac{S_{n T}}{S_{n M}}
$$

motor start-up current
Reactance of auxiliary load before start-up:

$$
x_{V S}=\frac{1}{\sin \varphi_{V S}} \cdot \frac{S_{n T}}{S_{V S}}
$$

The Biggest Appliance Start-up

Trf. current will be:

$$
i_{T}=u_{M} \cdot\left(\frac{1}{x_{V S}}+\frac{1}{x_{M}}\right)=u_{M} \cdot\left(\frac{S_{V S} \cdot \sin \varphi_{V S}}{S_{n T}}+i_{Z M} \cdot \frac{S_{n M}}{S_{n T}}\right)
$$

Corresponding value of short circuit power (p.u.) is:
$S_{k M}=\frac{u_{S}}{x_{T}}=\frac{u_{S}}{u_{S}-u_{M}} \cdot i_{T}=\frac{u_{S} \cdot u_{M}}{u_{S}-u_{M}} \cdot\left(\frac{S_{V S} \cdot \sin \varphi_{V S}}{S_{n T}}+i_{z M} \cdot \frac{S_{n M}}{S_{n T}}\right)$
Nominal short circuit power :
$S_{k M}=\frac{u_{S} \cdot u_{M}}{u_{S}-u_{M}} \cdot\left(S_{V S} \cdot \sin \varphi_{V S}+i_{z M} \cdot S_{n M}\right)=\frac{u_{S}}{\frac{u_{S}}{u_{M}}-1} \cdot\left(S_{V S} \cdot \sin \varphi_{V S}+i_{z M} \cdot S_{n M}\right)$

Appliance's Group Start-up

Analogically for k -appliances (the rest of auxiliary is neglected):

$$
x_{Z}=\left(\frac{1}{x_{M 1}}+\ldots+\frac{1}{x_{M k}}\right)^{-1}
$$

Corresponding value of short circuit power (p.u.) is:

$$
s_{k M}=\frac{u_{S}}{x_{T}}=\frac{u_{S}}{u_{S}-u_{M}} \cdot i_{T}=\frac{u_{S} \cdot u_{M}}{u_{S}-u_{M}} \cdot \frac{1}{S_{n T}} \cdot \sum_{i=1}^{k} i_{z M i} \cdot S_{n M i}
$$

Nominal short circuit power :

$$
S_{k M}=\frac{u_{S} \cdot u_{M}}{u_{S}-u_{M}} \cdot \sum_{i=1}^{k} i_{z M i} S_{n M i}
$$

Addenum to 2nd Lecture

Determination of transformer ratio:

