
ILL-Conditioned Systems 
 
The solutions of some linear systems (that can be represented by systems of linear 
equations) are more sensitive to round-off error than others.  For some linear systems a 
small change in one of the values of the coefficient matrix or the right-hand side vector 
causes a large change in the solution vector.   
 
Consider the following system of two linear equations in two unknowns. 
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The system can be solved by using previously covered methods and the solution is 

1001 −−−−====x and 2002 −−−−====x  
 
Now, let us make a slight change in one of the elements of the coefficient matrix.  
Change 11A  from 400 to 401 and see how this small change affects the solution of the 
following. 
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This time the solution is 400001 ====x and 798002 ====x  
  
With a modest change in one of the coefficients one would expect only a small change in 
the solution.  However, in this case the change in solution is quite significant.  It is 
obvious that in this case the solution is very sensitive to the values of the coefficient 
matrix A. 
 
When the solution is highly sensitive to the values of the coefficient matrix A or the right-
hand side constant vector b, the equations are called to be ill-conditioned.  Ill-conditioned 
systems pose particular problems where the coefficients or constants are estimated from 
experimental results or from a mathematical model.  Therefore, we cannot rely on the 
solutions coming out of an ill-conditioned system.  The problem is then how do we know 
when a system of linear equations is ill-conditioned.  To do that we have to first define 
vector and matrix norms. 
 
Vector and Matrix Norms 
A norm of a vector is a measure of its length or magnitude.  There are, however, several 
ways to define a vector norm.  For the purpose of this discussion we will use a 
computationally simple formulation of a vector norm in the following manner. 
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The notation {{{{ }}}}max  denotes the maximum element of the set.  The formulation shown 
by Eqn. (1) is also called the infinity norm of the vector x.  Note the following properties 
of infinity norm. 
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The last property is called the triangle inequality. 
 
Now we need to consider the notion of a  matrix norm.  A matrix norm can be defined in 
terms of a vector norm in the following manner. 
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Note that the expression for A  involves summing the absolute values of elements in the 
rows of  A. 
 
Consider the following linear algebraic system. 
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We have {{{{ }}}} 111173 ======== ,,maxb  and {{{{ }}}} 16161112 ======== ,,maxA  
 
The matrix norm satisfies all the properties of a vector norm and, in addition, a matrix 
norm has the following important property. 

xAAx ⋅⋅⋅⋅≤≤≤≤                                                                                             (3) 
 
Condition Number 
 
Let us investigate first,  how a small change in the b vector changes the solution vector.  x 
is the solution of the original system and let xx ∆++++   is the solution when b changes from 
b to bb ∆++++ . 
 
The we can write 

(((( )))) bbxxA ∆∆ ++++====++++  
or, bbxAAx ∆∆ ++++====++++  
But because bAx ==== , it follows that bxA ∆∆ ==== . 
i.e., bAx ∆∆ 1−−−−====  
 



By using the relationship shown in Eqn. (3) we can write that 

bAbA ∆∆ ⋅⋅⋅⋅≤≤≤≤ −−−−−−−− 11  

i.e., bAx ∆∆ ⋅⋅⋅⋅≤≤≤≤ −−−−1                                                                                 (4) 
Again using Eqn. (3) to the original system, bAx ====  we can write that 

xAAx ⋅⋅⋅⋅≤≤≤≤  

i.e., xAb ⋅⋅⋅⋅≤≤≤≤  

or, bxA ≥≥≥≥⋅⋅⋅⋅                                                                                          (5) 
 
Divide Eqn. (4) by Eqn. (5) 
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where (((( ))))AK  is called the condition number of the matrix A and is defined as 

(((( )))) 1−−−−⋅⋅⋅⋅==== AAAK ∆  provided A is nonsingular. 
 

(((( ))))AK  is a measure of the relative sensitivity of the solution to changes in the right-hand 
side vector b.   Eqn. (6) gives the upper bound of the relative change 
 
Now, let us investigate what happens if a small change is made in the coefficient matrix 
A.  Consider A is changed to AA ∆++++ and the solution changes from x to xx ∆++++ . 
(((( ))))(((( )))) bxxAA ====++++++++ ∆∆ .  It can be shown that the changes in the solution can be expressed 
in the following manner. 
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When the condition number (((( ))))AK  becomes large, the system is regarded as being ill-
conditioned.  Matrices with condition numbers near 1 are said to be well-conditioned. 
 
In our previous example  
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Scaling  
Large condition numbers can also arise from equations that are in need of scaling.  
Consider the following coefficient matrix which corresponds to one ‘regular’ equation 
and one ‘large’ equation. 
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In this case the inverse of the matrix is: 
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{{{{ }}}} 200020002 ======== ,maxA  and {{{{ }}}}50050500501 .,.maxA ====−−−− .  The condition number is: 
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Scaling (called Equilibration) can be used to reduce the condition number for a system 
that is poorly scaled.  If each row of A is scaled by its largest element, then the new A and 
its inverse become 
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The condition number of the scaled system is 2. 
 
We have just mentioned that when the condition number (((( ))))AK  becomes large, the 
system is regarded as being ill-conditioned.  But, how large does (((( ))))AK  have to be before 
a system is regarded as ill-conditioned?   There is no clear threshold.  However, to assess 
the effects of ill-conditioning, a rule of thumb can be used.  For a system with condition 
number (((( ))))AK , expect a loss of roughly (((( ))))AKlog10  decimal places in the accuracy of the 
solution.  Therefore for the system with 
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A  whose condition number (((( ))))AK  is 3603 expect to lose 3 decimal 

places in accuracy. 

IEEE standard double precision numbers have about 16 decimal digits of accuracy, so if a 
matrix has a condition number of 1010, you can expect only six digits to be accurate in the 



answer.  An important aspect of conditioning is that, in general, residuals bAxR −−−−====  are 
reliable indicators of accuracy only if the problem is well-conditioned. 

 

THE END 


