
L. Vandenberghe ECE133A (Fall 2018)

15. Problem condition

• condition of a mathematical problem

• matrix norm

• condition number

15.1



Sources of error in numerical computation

Example: evaluate a function f : R→ R at a given x

sources of error in the result:

• x is not exactly known

– measurement errors
– errors in previous computations

−→ how sensitive is f (x) to errors in x?

• the algorithm for computing f (x) is not exact

– discretization (e.g., algorithm uses a table to look up function values)
– truncation (e.g., function is evaluated by truncating a Taylor series)
– rounding error during the computation

−→ how large is the error introduced by the algorithm?
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Condition (conditioning) of a problem

describes sensitivity of the solution to changes in the problem data

• well-conditioned problem:

small changes in the data produce small changes in the solution

• ill-conditioned (badly conditioned) problem:

small changes in the data can produce large changes in the solution

a rigorous definition depends on what “large error” means

• absolute or relative error, which norm is used, . . .

• the informal definition is sufficient for our purposes
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Example: function evaluation

here the problem is: given x, evaluate y = f (x)

• if x is changed to x + ∆x, solution changes to

y + ∆y = f (x + ∆x)

• condition with respect to absolute error in x and y

|∆y | ≈ | f ′(x)| |∆x |

problem is ill-conditioned with respect to absolute error if | f ′(x)| is very large

• condition with respect to relative errors in x and y

|∆y |
|y | ≈

| f ′(x)| |x |
| f (x)|

|∆x |
|x |

ill-conditioned with respect to relative error if | f ′(x)| |x |/| f (x)| is very large

Problem condition 15.4



Roots of a polynomial

p(x) = (x − 1)(x − 2) · · · (x − 10) + δ · x10

roots of p computed by MATLAB for two values of δ
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roots are very sensitive to errors in the coefficients
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Condition of a set of linear equations

• assume A is nonsingular and Ax = b

• if we change b to b + ∆b, the new solution is x + ∆x with

A(x + ∆x) = b + ∆b

• the change in x is
∆x = A−1

∆b

Condition

• the equations are well-conditioned if small ∆b results in small ∆x

• the equations are ill-conditioned if small ∆b can result in large ∆x
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Example of ill-conditioned equations

A =
1
2

[
1 1

1 + 10−10 1 − 10−10

]
, A−1 =

[
1 − 1010 1010

1 + 1010 −1010

]

• solution for b = (1, 1) is x = (1, 1)

• change in x if we change b to b + ∆b:

∆x = A−1
∆b =

[
∆b1 − 1010(∆b1 − ∆b2)
∆b1 + 1010(∆b1 − ∆b2)

]

small ∆b can lead to extremely large ∆x
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Outline

• condition of a mathematical problem

• matrix norm

• condition number



Matrix norms

the Frobenius norm of an m × n matrix A is defined as

‖A‖F =
√√

m∑
i=1

n∑
j=1

A2
i j

• denoted ‖A‖ in the textbook

• in MATLAB: norm(A,’fro’); in Julia: norm(A)

the 2-norm or spectral norm is defined as

‖A‖2 = max
x,0

‖Ax‖
‖x‖

• the norms ‖Ax‖ and ‖x‖ are Euclidean norms of vectors

• no simple explicit expression, except for special A

• readily computed numerically (in MATLAB: norm(A); in Julia: opnorm(A))
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Interpretation of 2-norm

the m × n matrix A defines a linear function f (x) = Ax

Ax y = f (x) = Ax

• ‖Ax‖/‖x‖ gives the amplification factor or gain for input x

• the gain only depends on the direction of x

• the 2-norm of A is the maximum gain over all directions:

‖A‖2 = max
x,0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖
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Computing the 2-norm of a matrix

Simple matrices: sometimes it is easy to maximize ‖Ax‖/‖x‖
• zero matrix: ‖0‖2 = 0

• identity matrix: ‖I ‖2 = 1

• diagonal matrix:

A =


A11 0 · · · 0
0 A22 · · · 0
... ... . . . ...
0 0 · · · Ann

 , ‖A‖2 = max
i=1,...,n

|Aii |

• matrix with orthonormal columns: ‖A‖2 = 1

General matrices: ‖A‖2 must be computed by numerical algorithms
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Properties of the matrix norm

Properties satisfied by all matrix norms

• nonnegative: ‖A‖2 ≥ 0 for all A

• positive definiteness: ‖A‖2 = 0 only if A = 0

• homogeneity: ‖βA‖2 = |β|‖A‖2
• triangle inequality: ‖A + B‖2 ≤ ‖A‖2 + ‖B‖2

Additional properties satisfied by the 2-norm

• ‖Ax‖ ≤ ‖A‖2‖x‖ if the product Ax exists

• ‖AB‖2 ≤ ‖A‖2‖B‖2 if the product AB exists

• if A is nonsingular: ‖A‖2‖A−1‖2 ≥ 1

• if A is nonsingular: 1/‖A−1‖2 = minx,0 (‖Ax‖2/‖x‖)
• ‖AT ‖2 = ‖A‖2
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Outline

• condition of a mathematical problem

• matrix norm

• condition number



Bound on absolute error

suppose A is nonsingular and define

x = A−1b, ∆x = A−1
∆b

Upper bound on ‖∆x‖:

‖∆x‖ ≤ ‖A−1‖2 ‖∆b‖

• follows from property 4 on page 15.11

• small ‖A−1‖2 means that ‖∆x‖ is small when ‖∆b‖ is small

• large ‖A−1‖2 means that ‖∆x‖ can be large, even when ‖∆b‖ is small

• for every A, there exists nonzero ∆b such that ‖∆x‖ = ‖A−1‖2 ‖∆b‖
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Bound on relative error

suppose in addition that b , 0; hence x , 0

Upper bound on ‖∆x‖/‖x‖:

‖∆x‖
‖x‖ ≤ ‖A‖2‖A

−1‖2
‖∆b‖
‖b‖ (1)

• follows from ‖∆x‖ ≤ ‖A−1‖2‖∆b‖ and ‖b‖ ≤ ‖A‖2‖x‖

• ‖A‖2‖A−1‖2 small means ‖∆x‖/‖x‖ is small when ‖∆b‖/‖b‖ is small

• ‖A‖2‖A−1‖2 large means ‖∆x‖/‖x‖ can be much larger than ‖∆b‖/‖b‖

• for every A, there exist nonzero b, ∆b such that equality holds in (1)
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Condition number

Definition: the condition number of a nonsingular matrix A is

κ(A) = ‖A‖2‖A−1‖2

Properties

• κ(A) ≥ 1 for all A (last property on page page 15.11)

• A is a well-conditioned matrix if κ(A) is small (close to 1):

the relative error in x is not much larger than the relative error in b

• A is badly conditioned or ill-conditioned if κ(A) is large:

the relative error in x can be much larger than the relative error in b
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Example

• A is blurring matrix, nonsingular with condition number ≈ 109

• we apply A to image x

blurred image
y1 = Ax

blurred and noisy image
y2 = Ax + small noise
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Example

we solve Ax = y for the two blurred images

A−1y1 A−1y2

• illustrates ill conditioning of A

• explains need for regularization in deblurring algorithms
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Exercises

Exercise 1

A =
1
2

[
1 1

1 + a 1 − a

]
, A−1 =

1
a

[
a − 1 1
a + 1 −1

]
a is small and nonzero (a = 10−10 on page 15.7); show that κ(A) ≥ 1/|a|

Exercise 2
suppose A = UBV with U, V orthogonal, and B nonsingular; show that

κ(A) = κ(B)

Exercise 3
suppose A = uvT where u and v are vectors; show that ‖A‖2 = ‖u‖‖v‖
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Exercises

Exercise 4 (ex. 15.3)

• let u be a vector; show that

‖u‖ = max
v,0

vTu
‖v‖

• let A be a matrix; show that

‖A‖2 = max
y,0, x,0

yT Ax
‖x‖‖y‖

therefore ‖A‖2 = ‖AT ‖2
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