BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY

F I T FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

ADVANCED ELECTRONIC CIRCUITS SIMULATION
METHODS

MODERNi METODY MODELOVANI A SIMULACE ELEKTRONICKYCH OBVODU

PHD THESIS
DISERTACNI PRACE

AUTHOR Ing. FILIP KOCINA
AUTOR PRACE

SUPERVISOR doc. Ing. JIRI KUNOVSKY, CSc.
SKOLITEL

BRNO 2017

Abstract

The thesis deals with the simulation of electronic circuits. It describes the Capacitor Substi-
tution Method (CSM) to transform electronic circuits into electric circuits which can then be
solved using numerical methods, namely the Modern Taylor Series Method (MTSM). This
method is distinguished by automatic order selection, halving the step size as required and
the wide area of stability according to the order. Within the thesis, specialized program-
ming equipment to solve ordinary differential equations using MTSM was created by the
author of the thesis, with many improvements to the algorithms (compared to TKSL/386).
These algorithms involve the simplification of generic expressions into polynomials, paral-
lelization independent of the integration method etc. This software runs on a Linux server
which communicates using the TCP/IP stack. The equipment was successfully used to
simulate VLSI circuits whose solution by CSM was much faster and more memory-efficient
than the state-of-the-art SPICE.

Abstrakt

Disertacni prace se zabyva simulaci elektronickych obvod. Popisuje metodu kapacitorové
substituce (CSM) pro prevod elektronickych obvodi na elektrické obvody, jez mohou byt
nésledné feseny pomoci numerickych metod, zejména Moderni metodou Taylorovy fady
(MTSM). Tato metoda se odliSuje automatickym vybérem fadu, pulenim kroku v pt¥ipadé
potfeby a rozsahlou oblasti stability podle zvoleného tddu. V rédmci diserta¢ni prace bylo
autorem disertace vytvoreno specializované programové vybaveni pro feSeni obycejnych
diferenciélnich rovnic pomoci MTSM, s mnoha vylepSenimi v algoritmech (v porovnéni
s TKSL/386). Tyto algoritmy zahrnuji zjednodusovani obecnych vyrazi na polynomy, pa-
ralelizaci nezavislou na integra¢ni metodé atp. Tento software bézi na linuxovém serveru,
ktery komunikuje pomoci protokolu TCP/IP. Toto vybaveni bylo tispésné pouzito pro simu-
laci VLSI obvodi, jejichz feseni pomoci CSM bylo znac¢né rychlejsi a spotrebovavalo méné
paméti nez state-of-the-art SPICE.

Keywords

Modern Taylor Series Method, Capacitor Substitution Method, ordinary differential equa-
tions, electronic circuits, logic gates, inverter, NAND, NOR, XOR, RS latch, D latch, JK
flip-flop, T flip-flop, binary adder, Booth’s algorithm, VLSI.

Klic¢ova slova

Moderni metoda Taylorovy rady, metoda kapacitorové substituce, obyc¢ejné diferencialni
rovnice, elektronické obvody, logickd hradla, invertor, NAND, NOR, XOR, RS klopny ob-
vod, D klopny obvod, JK klopny obvod, T klopny obvod, binarni s¢itacka, Boothtiv algo-
ritmus, VLSI.

Reference

KOCINA, Filip. Advanced FElectronic Circuits Simulation Methods. Brno, 2017. PhD
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Kunovsky Jiri.

Advanced Electronic Circuits Simulation Methods

Declaration

I hereby declare that this PhD thesis was prepared as an original author’s work under
the supervision of Assoc. Prof. Jifi Kunovsky. All the relevant information sources which
were used during the preparation of this thesis are properly cited and included in the list
of references.

Filip Kocina
June 28, 2017

Acknowledgements

I would like to thank Assoc. Prof. Jit{ Kunovsky for his very kind, valuable and insightful
advice which helped me to create this thesis. Many thanks belong to my family and
friends who supported me throughout my studies, although they might not understand all
the details of my work; it would have been harder to complete the thesis without their
encouragement.

Contents

1 Introduction

1.1
1.2
1.3

Motivation e e
AImS . . e,
Overview of the work

2 Differential-Algebraic Equations

2.1

2.2

2.3

3.1
3.2
3.3

3.4
3.5
3.6

Numerical methods oo
2.1.1 Euler method
2.1.2 RungeKutta methods00
2.1.3 Modern Taylor Series Method
Automatic transformation Lo
2.2.1 Trigonometric functions oo
2.2.2 Inverse trigonometric functions
2.2.3 Hyperbolic functions oo
2.2.4 Inverse hyperbolic functions
2.2.5 Exponential function
2.2.6 Natural logarithm 0000
227 Square Tooto
2.2.8 Division
2.2.9 Example.
Transformation into basic operations
2.3.1 Transformation into the minimal form
2.3.2 Minimal form

Characteristics of MTSM

Accuracy of calculation
Speed of calculation
Stiff systemso
3.3.1 Implicit form of MTSM
Stopping rule
Principle of calculating MTSM terms
Practical usage L L
3.6.1 Mechanical oscillator L oL
3.6.2 Calculation of a definite integral
3.6.3 Fourier coefficients L

NN =

© 00~ O ot ot ;o

e
T W W DN NN = O

4 Solving Electric Circuits
4.1 Phasor diagrams
4.1.1 Serial RLC circuit

4.1.2 Serial-parallel circuits

4.2 Symbolic-complex method L oL
4.3 Numerical solution
4.3.1 Elimination of algebraic operations
4.3.2 Shortening the transient response oL
4.4 Telegraph line e
4.4.1 Symbolicsolution oo

4.4.2 Numerical solution

4.4.3 Dependency of output voltage on input voltage

4.5 Parallel methods
4.5.1

5 Solving Electronic Circuits

5.1 Semiconductors

Generic parallelization
4.5.2 Acceleration for linear ODEs

5.1.1 Diode
5.1.2 Transistor
52 CMOS
5.3 Approaches to VLSI simulation . . .
53.1 SPICE.............
532 FOS
5.4 Capacitor Substitution Method . . .
5.4.1 CMOS inverter
5.4.2 CMOSNAND
54.3 CMOSNOR
544 XOR
6 VLSI
6.1 CMOS latches.
6.1.1 RSlatch............
6.1.2 Dlatch
6.1.3 JKlatch
6.2 CMOS flip-flops.
6.21 Dflipflop...........
6.2.2 JKflipflop
6.3 Adder
6.3.1 Halfadder.
6.3.2 Fulladder
6.3.3 Transient response
6.3.4 CLA adder
6.3.5 Scale of integration
6.3.6 Experiments
6.4 Multiplier
6.4.1 Booth’s algorithm
6.4.2 Multiplier components

ii

25
25
25
26
27
27
29
30
31
32
33
34
38
38
40

45
45
45
47
47
48
48
48
49
49
53
56
58

6.4.3 Verification,

6.4.4 Experiments
6.5 Generic CMOS circuits
6.5.1 Generating ODEs
Conclusion
7.1 Aims achieved
7.2 Research contribution
7.3 Future research e e e

List of Publications

Bibliography

Appendices

A

List of Appendices e

Practical usage

Al Circletest e
A2 Stiffsystemo Lo
A.3 Mechanical oscillator
A.4 Definite integral
A.5 Fourier coefficientso

Electric circuits

B.1 Algebraic operations
B.2 Parasitic capacity
B.3 Compensating capacity o
B4 Telegraph line

Electronic circuits

C.1 Diode @ e
C.2 Inverter o e
C.3 NAND . . . e
C.4 NAND with threeinputs
C.5 NOR . . . e
C.6 NOR with threeinputs.
C.7 XOR . . . e
C.8 XOR with threeinputs

Electronic circuits (SPICE)

D.1 Inverter e
D.2 NAND e
D.3 NAND with three inputs
D4 NOR
D.5 NOR with threeinputs
D.6 XOR e
D.7 XOR with three inputs L

iii

81
82
82
83

85

87

91
93

95
95
95
96
96
96

99
99
99
100
100

103
103
103
104
105
105
106
107
108

E Latches and flip-flops

E.1 RS latch .
E.2 D latch .
E.3 JK latch .
E.4 D flip-flop
E.5 JK flip-flop
E.6 T flip-flop

F Latches and flip-flops (SPICE)

F.1 RS latch .
F.2 D latch .
F.3 JK latch .
F.4 D flip-flop
F.5 JK flip-flop
F.6 T flip-flop

G VLSI
G.1 Half adder
G.2 Full adder

H VLSI (SPICE)
H.1 Half adder
H.2 Full adder

Index

iv

117
117
118
119
120
121
123

127
127
127
128
129
130
131

133
133
134

139
139
140

143

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

5.1
5.2
5.3
5.4
9.5
5.6
5.7

Circle test e 6
Syntax tree 14
Numerical solution 17
Solution of mechanical oscillator 22
Calculation of definite integral 23
Calculation of Fourier coefficients 24
Relationship between phasors and voltage 25
RLC circuit e 26
Solution of RLC circuit 26
More complex circuito oo 26
Solution of more complex circuit 27
Electric circuit 28
Solution of electric circuit 29
Electric circuit with parasitic capacitor 29
Comparison of Ug, and Ug o . 30
Comparison of Ug, and Uy for alternating-voltage source 30
Electric circuit with compensating capacity 31
Transient response of circuit with compensating capacity 31
Telegraph equation model L L 32
Voltage phasors L 33
Symbolic solution 33
Numerical solution 34
Adjusted telegraph line — response for harmonic signal 35
Adjusted telegraph line — response for impulse 35
Open telegraph line — response for harmonic signal 36
Open telegraph line — response for impulse 36
Open telegraph line with Ry =100 Q2 37
Open telegraph line with higher Ry 37
Parallel cooperation 38
Electronic circuit with diode 45
Solution by Newton-Raphson method 46
Solution of systemo 47
Solution of electronic circuit with transistor 47
Inverter e 49
Inverter — SPICE 50
Inverter — substituted by CSM L L 51

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

Inverter — solution 52

Inverter — approximation error Lo Lo Lo 52
NAND . . 53
NAND - substituted by CSM 54
NAND - merging capacitors L o 54
NAND —solution 55
NAND — approximation error 55
NOR . . 56
NOR — substituted by CSM 57
NOR —solution e 58
NOR — approximation error 58
RSlatch o o 61
RS latch —solution 62
RS latch — approximation error Lo 62
Dlatch 63
D latch —solution 63
D latch — approximation error Lo oL 64
JK latch o Lo 64
JK latch —solution L 65
JK latch — approximation error 65
Dflip-flop 66
D flip-flop —solution 66
D flip-flop — approximation error L. 66
JKflip-flop 67
JK flip-flop —solution 67
JK flip-flop — approximation error 68
Carry propagation L Lo 69

vi

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Solution of ¥/ = —y 18
Solution of w' = w 18
Solution of stiff system 19
Problem with stopping rule 0oL 20
Fourier coefficients a, 23
Fourier coefficients by, 24
Serial solution 39
Parallel solution 39
Acceleration e 40
Parallel solution of linear ODEs 42
Acceleration of linear heuristic 42
Total acceleration 43
NAND —input e 53
NOR —input o 56
XOR . . e 59
XOR with three inputs 60
RSlatch —inputs 62
D latch —inputs L 63
JKlatch —inputs o 64
D flip-flop —inputs 66
JK flip-flop —inputs Lo 67
CLA adder — transient response 70
CLA adder — parameters 71
Serial simulation e 72
Parallel simulation 72
Acceleration of CSM compared to SPICE 73
Booth’s multiplier — partial results, 76
Booth’s multiplier — parameters L oL 77
Serial simulation 77
Parallel simulation 78
Acceleration of CSM compared to SPICE 78

vii

Nomenclature

Yy Time Derivative (y)
CLA Carry Look-ahead
CLU Carry Look-ahead Unit

CMOS Complementary Metal-Oxide—Semiconductor

CNF Conjunctive Normal Form
CPU Central Processing Unit
CSM Capacitor Substitution Method
DNF Disjunctive Normal Form
EPS Error Per Step

FOS Fast ODE Solver

ILA Invert Look-ahead

ILU Invert Look-ahead Unit
LSB Least Significant Bit

LSI Large-Scale Integration
MSB Most Significant Bit

MSI Medium-Scale Integration

MTSM Modern Taylor Series Method
NMOS Negative Metal-Oxide—Semiconductor
ODE Ordinary Differential Equation

ORD Order of Method

PMOS Positive Metal-Oxide—Semiconductor
SSI Small-Scale Integration

TMAX Maximum Simulation Time

ULSI Ultra Large-Scale Integration

VLSI Very Large-Scale Integration

ix

Chapter 1

Introduction

Many real-world problems lead to large systems of ordinary differential equations (ODEs).
These systems cannot be solved analytically; therefore, numerical methods are involved.
Many numerical methods exist, differing in complexity, accuracy, speed and flexibility.
Some methods can be substituted using superior variants, while others are used together
with more sophisticated optimizations for a specific purpose.

In this thesis, some methods are mentioned, but the main subject of interest is a very
precise, fast and flexible method that uses the Taylor series. The method can solve many
technical initial-value problems. This method is used in the software I developed to compute
large systems of differential equations. The software runs on a Linux server, accepting the
tasks using the TCP/IP stack.

The main part of the thesis is devoted to electric/electronic circuits simulation. The elec-
tric circuits discussed contain only resistors, capacitors and coils, while electronic circuits
also include semiconductors like diodes and transistors. Both the diode and the transistor
are represented using their exponential characteristics. The Capacitor Substitution Method
(CSM) developed is used for the simulation of transistors. Further, the simulation of various
electronic components is proposed.

CSM is much faster and more memory-efficient than the state-of-the-art SPICE. Rela-
tively large Very Large-Scale Integration (VLSI) circuits (over a million transistors) have
been successfully simulated in less than four minutes. For example, multiple-bit adders and
multipliers are used. These circuits are simulated using both CSM and SPICE and the
results are compared. The simulation of the multipliers is relatively slow when compared
to the adders, since more algorithmic cycles have to be simulated.

1.1 Motivation

The simulation of electronic circuits is still a challenging problem. The simulation of VLSI
circuits is complicated and time-consuming using the existing software, which implies in-
convenience for everyday usage. This is due to the precise simulation of the individual
transistors that is performed. This simulation uses a large amount of resources.

Another approach to the simulation of electronic circuits is to consider primarily the
steady state of the transistor and the length of the transient response. The rest of the
behavior (and possible errors) can be ignored. The approach benefits from the fact that
most of the time only the length of the transient response is required and it is irrelevant

that the error during the transient response is relatively high. This approach is the main
subject of the thesis.

1.2 Aims

This thesis deals with three research hypotheses:
— The equations describing an electronic circuit can be systematically created.
— The transistors could be replaced by RC circuits.

— The proposed method should be efficient.

1.3 Overview of the work

The thesis is divided into the following chapters. The first chapter introduces the thesis.

The second chapter focuses on systems of differential-algebraic equations and men-
tions some numerical methods which can be used for solving ordinary differential equations
(ODEs), especially the Modern Taylor Series Method (MTSM). After a brief overview of
the methods, the automatic transformation used for MTSM is explained and the trans-
formation into the minimal form is introduced. This transformation can be performed on
all elementary functions (trigonometric, inverse trigonometric, hyperbolic, inverse hyper-
bolic, exponential function, natural logarithm and square root) and the basic mathematical
operations (addition, subtraction, multiplication and division); the minimal form is then
a polynomial of the variables.

The third chapter discusses the characteristics of MTSM — accuracy (leading to a need
for arbitrary precision arithmetic), the speed of calculation (based on accuracy and the step
size), stiff systems (that require implicit methods) and the stopping rule (some drawbacks
of the default chosen one). The principle of calculating MTSM terms and the practical
usage of MTSM are mentioned at the end of the chapter.

Electric circuits and their solution are discussed in the fourth chapter. These circuits
and methods are used throughout the rest of the thesis. Symbolic and numerical solutions
are compared and improvements in the acceleration of the transient response are shown.
After that, a few parallel methods are mentioned and the acceleration of various approaches
to solving the telegraph line is presented.

The fifth chapter builds upon the fourth chapter and focuses on solving electronic cir-
cuits. A few methods to solve the diode and the transistor are analyzed. Complementary
Metal-Oxide—Semiconductor (CMOS) technology is chosen since it is the most widely used
technology in electronic circuits. The main contribution of this thesis is the Capacitor
Substitution Method (CSM) which is proposed later in the chapter. This method was im-
plemented by the author of the thesis in a general-purpose programming language. Various
electronic circuits are analyzed using this method: basic CMOS gates (inverter, NAND,
NOR) and XOR. The results were compared with the state-of-the-art SPICE. The method
can be used to simulate arbitrary circuits consisting of the gates.

The sixth chapter focuses on VLSI circuits simulation and shows the experiments and
comparison between CSM and SPICE. The CMOS latches and flip-flops are analyzed; the
most important are experiments with multiple-bit adders and multipliers. The experiments
confirm that CSM is very suitable for VLSI circuits simulations. CLA adders up to the

16kb adder (over a million transistors) and 256-bit multiplier (using Booth’s algorithm) were
successfully simulated. The effectiveness of CSM is compared to SPICE and the results show
that CSM is much faster and uses fewer resources. The chapter also analyzes the potential
of an easy machine representation of any electronic circuit — by an adjacency matrix and
a vector of operations (nodes of the graph). This representation can be automatically
generated by some tool for electronic circuits design.

The last chapter concludes the thesis. It summarizes the aims achieved and outlines
the possibilities for future research. At the end of the chapter, there is an overview of my
doctoral work. A list of publications is presented after this chapter.

Chapter 2

Differential-Algebraic Equations

A large number of technical problems can be described using a system of ordinary differential
and algebraic equations [17, 18]. These systems can be formally written as

w) = filwi, ..., We, T1, ..., Ty), wi(ty) = w?

W = fr(wiy .. Woy @1, X)), wa(ty) = w (2.1)
r1 = gl(wl,...,wn,xl,...,mm)

T = Gm(Wi, .., Wy X1y Ty)

consisting of n ordinary differential equations and m algebraic equations. Few systems can
be solved analytically; therefore, numerical methods are most commonly used to find the
solution [11, 16].

2.1 Numerical methods

Various numerical methods can be used to solve ordinary differential equations (ODEs).
The methods for solving algebraic equations are not mentioned since they are not required
for the proposed method of solving electronic circuits.

Initial-value problems described by ODEs can be solved using many different methods.
Let (2.2) specify the initial-value problem.

y/ = f(tv y)v y(tO) = Yo (22)

Then the problem can be solved by a numerical method — several methods are mentioned
in the following subsections.

2.1.1 Euler method

The simplest numerical method for solving ordinary differential equations is the explicit
FEuler method. It is a special form of the explicit Taylor method of the first order:

Yntl = Yn+h- f(tna yn)- (2-3)

The simplicity of the Euler method unfortunately implies very low accuracy. Step
size h has to be small for more precise results and the method is completely unusable for
stiff systems. The circle test can be used as an easy demonstration of the poor precision of
the Euler method:

y' = —y, y(0) =0, ¢y (0) = 1. (2.4)
Figure 2.1 shows the problem clearly! (the source code can be found in Appendix A.1).

Some drawbacks of the explicit Euler method can be removed by the implicit form of the
Euler method [23].

2 T T T T T T T 2 T T T T T T T
15 1 1.5 1
1F 1 1F 1
0.5 - 0.5 .
0 . 0 .
-0.5 | . -0.5 | |
1k i a1k]
15 F . 15 .

2 R S E— 2 T S S E—
-2 -15 -1 -05 0 05 1 15 2 -2 -15 -1 -05 0 05 1 15 2

(a) Euler method (b) Exact solution

Figure 2.1: Circle test

2.1.2 RungeKutta methods

RungeKutta methods are commonly used for solving initial-value problems. These methods
are often chosen in many technical branches, mainly for solving non-stiff problems. The

next value is calculated by
ORD

Yntl = Yn + Z wik; (2.5)
i=1

where weights w; are constant and coefficients k; are calculated by (2.6); function f(¢,y) is
the right side of the solved ordinary differential equation.

i—1
ki = ho f | tn+ ihn, Yo+ Y Bish; (2.6)
j=1

Weights w;, vector @ and matrix g determine a specific method — they are often derived
from the Taylor series [6, 7]. Step size h, can be variable, but this is rare. The following

'Dependency of y' on y with step size 0.05 is shown.

fourth-order method (2.7) appears to be the most frequent (with constant step size h),
see [8, 38].
ki = h- f(tna yn)
ko = h-f(t +1h —i—lk
2 = n 9 y Yn 9 1
2
k4:h'f(tn+h7yn+k3)

1 1
]{33 = h- f (tn + *ha UYn + 21432) (27)

1
Yot = Yo+ 2 (k1 + 2k + 2hs + K

2.1.3 Modern Taylor Series Method

The Modern Taylor Series Method (MTSM) uses not only the first derivative for calculating
the next value, but also higher derivatives. These derivatives are obtained by consequent
differentiating the previous derivatives (the right side of the equation is the first derivative)
[2, 33]. The value in every point is obtained by their combination (2.8).

ORD,,

Yn+l = Yn +
=1

Y Cin (2.8)

il

In practice, it is impossible to use an infinite sum of MTSM terms. The number of terms
is determined by the order of the method (ORD),,). Contrary to the previous methods, it
is possible to choose any order: the higher the order chosen, the more accurate the solution
calculated. The MTSM order changes automatically during the calculation; the calculation
in the current time step ends when the stopping rule is met: the absolute values of three
successive MTSM terms are less than the required accuracy (EPS). Although higher orders
allow the use of a bigger step size, multiple-precision arithmetic has to be often used in
that case; otherwise, the results would not be accurate.

As an example, the calculation of Euler’s number can be shown. By solving the dif-
ferential equation

y, =Y y(O) =1, (29)

Fuler’s number can be obtained in one time step with precision up to 10000 decimal posi-
tions in less than one second (in one step with order 3278). See [26] for more details.

2.2 Automatic transformation

The most important part of MTSM is the automatic transformation. It is the cornerstone of
solving ordinary differential equations using this method. This transformation is performed
automatically in the software. Arbitrary precision arithmetic is important for the automatic
transformation; it uses more bits for numbers (typically hundreds and more), unlike the
built-in number types (double, float, etc.)

Function z(t) is assumed to be smooth, with derivative 2/(t) = wu(t); both z(t) and
u(t) should already be in polynomial form (transformed recursively using the rules that
follow). Then we can derive transformed expressions for every elementary function. First,
a derivative for the simple argument ¢ is shown; further, an arbitrarily complex argument
is used.

2.2.1 Trigonometric functions
Function sin
sin’(t) = cos(t)

After the differentiation of
y(t) = sin(z(t)),
we obtain
y'(t) = a'(t) - cos(a(t), ylto) = sin(x(to))

where 2/(t) is substituted by u(t) and cos(z(t)) by v(t):

y(t) = u(t)-v(t), ylto) = sin(a(t));

y'(t) = u(t)-v(t), ylto) = sin(z(to))
V() = —ult)-y(t), o(te) = cos(a(ts))
Function cos
cos'(t) = —sin(t)

The transformation of cos(z(t)) is performed in a similar manner:

y(t) = cos(x(t))
y(t) = —a'(t) - sin(x(t), y(to) = cos(x(to))

and after substituting sin(z(¢)) and 2’(t), we obtain the system of ODEs (2.13).

y'(t) = —u(t)-v(t), y(to) = cos(z(to))
V(t) = u(t) - y(t), v(te) = sin(z(to))
Function tan
tan’(t) = 14 tan®(t)

The transformation of tan(z(t)) is analogical:

y(t) = tan(x(t))
y(t) = 2'(t)- (1 +97(1), ylto) = tan(z(to))

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Function cot
cot’'(t) = —(1 + cot?(t))

The transformation of cot(z(t)) is almost the same as the transformation of tan(x(t)):

y(t) = cot(z(t))

/ / 2 (2.16)
y () = —2'(t)- (1+y7°(1), ylto) = cot(z(tn))

and the final form is
y'(t) = —u(t)- (1+4%(t), wlto) = cot(x(to)). (2.17)

2.2.2 Inverse trigonometric functions

Function arcsin
1
Vv1—t?

The transformation of arcsin(z(t)) is more complicated than the previous transformations:

arcsin’(t) =

y(t) = arcsin(x(t))

y'(t) = 111(22(75), y(to) = arcsin(z(tp)). (2.18)
The result is:
/ u(t .
y(t) = o)’ y(to) = arcsin(x(tp))
N R0 (219
Vv'(t) = R v(t) = /1 —22(to).
Function arccos
, _ 1
arccos (t) = Vi
The transformation of arccos(x(t)) is analogical:
y(t) = arccos(x(t))
V(0 = 20 ylt) = avccos(a(o) 220
and the result is:
V) = M0 () = arceos(a(t)
gy) uld) 2 (220
v'(t) = T v(ty) = /1 —22(to).

Function arctan

1
1+12
The transformation of arctan(z(t)) is a little simpler:

arctan’(t) =

y(t) = arctan(z(t))
2/ (t) (2.22)

y'(t) = m, y(to) = arctan(x(tg))
and the final form:
gt = —0) = arctan(a(to)) (2.23)
1+$2(t)7 0 0)): .
Function arccot
1
t'(t) = ——
arccot' (t) e

The transformation of arccot(z(t)) differs from the transformation of arctan(z(t)) only by
the minus sign and the initial condition:

y(t) = arccot(x(t))
o 2.24
J(t) = _H:EQ@)’ y(te) = arccot(z(to)) (2.24)

and the result:

y'(t) = u(t)(7’ y(to) = arccot(z(tp)). (2.25)

1+ a2(¢

2.2.3 Hyperbolic functions
Function sinh
sinh’(t) = cosh(t)

The transformation of hyperbolic sine is similar to trigonometric sine, except for the minus
sign and the initial conditions:

y(t) = sinh(z(t)
V(0) = #/0)-cos(a(). ylto) = sivh(r(t) 20
y () = u(t)-v(t), y(to) = sinh(z(to))
V() = u(t) - y(t), v(tg) = cosh(z(tog)).
Function cosh
cosh’(t) = sinh(t)
Analogically:
y(t) = cosh(z(t))
y'(t) = 2/(t) -sinh(z(t)), y(to) = cosh(x(ty))
VO = w00, ylte) = coshlalto) 220
V() = u(t) - y(t), v(tg) = sinh(z(tp)).

10

Function tanh

tanh’(t) = 1 — tanh?(t)
Similarly:
y(t) = tanh(x(t))
y'(t) = 2'(t) - (1-9*(1), y(to) = tanh(z(to)) (2.28)
y'(t) = u(t)- (1-y*(1), ylto) = tanh(z(ty)).
Function coth
coth’(t) = 1 — coth?(t)
Almost the same as tanh(t):
y(t) = coth(z(t))
y(t) = 2'(t) - (1-y*(1), ylto) = coth(z(to)) (2.29)
y(t) = u(t)-(1-32(t), ylto) = coth(a(to)).
2.2.4 Inverse hyperbolic functions
Function argsinh
argsinh’(t) = \/114_7#

The transformation of inverse hyperbolic sine is similar to inverse trigonometric sine, except

for the minus sign and the initial conditions:

y(t) = argsinh(z(t))
V) = =0 ylto) = anpsinh(a(to)
/) = 2 y(to) = argsinh(a(to)) (230
vy = "0) = VT),
Function argcosh
argcosh' (1) — t21—1
Analogically: 0~ (et
V) = 5) = anmcoshn(o)
v = . y(to) = argeosh(z(to)) (230
vy = "0 w) = VL

Function argtanh

1
1y —
argtanh’(t) = -
Similarly:
y(t) = argtanh(z(t))
A ON _
v = 1oy vli) = astanh(nlio) (232)
iy =) -
y(t) - 1_x2(t)7 y(t()) - argtanh(x(to))'
Function argcoth
, 1
argcoth’(t) = F—)

The transformation of inverse hyperbolic cotangent is almost the same, except for the initial
condition:

y(t) = argcoth(z(t))

/ ! t
V0 = {5 ult) = argeoth(a(to) -
, /
VO = 5 vt = argcoth(a(to)
2.2.5 Exponential function
() =
Simply:
y(t) = ¥
Y1) = 20O, ylty) =) (230

(1) = ult) - y(t), ylto) = e

2.2.6 Natural logarithm

In'(t) = -
Analogically:
y(t) = In(z(t))
v = T y) = () 235
v = S ylt) = InGel)
2.2.7 Square root
|
(V1) =57

This transformation is also made in the results of the previous transformations (where the
square root is used):

y'(t) = 2y Y0 = Valt) (2.36)
y(t) = 21;((%, y(to) = Vz(to)

2.2.8 Division

Divisions can be eliminated after the previous transformations have been performed — this
can be performed simultaneously with the other transformations, but some of them can
produce other divisions; therefore, it is better to replace divisions afterwards.

Suppose we have
1
t) = —. 2.
v = o (237)

If the first derivative of (2.37) is formed, the division can be avoided by using the common
substitution (2.38).
2/ (t) 1

y/(t) = _$2(L‘) = —u(t)-y2(t), y(to) = m (2.38)

Then every division can be substituted by the multiplication of the first argument and the
transformation of the second argument inversed.

2.2.9 Example

To understand the automatic transformation more clearly, consider the following differential
equation?.
/(t) B sin (esinh(t))
vy = cosh(t) ’
We can transform (2.39) into an equivalent system of differential equations (2.44) using the
following steps:
First, sinh(t) is transformed:

u(t) = sinh(t)

u'(t) = sinh’(t) = cosh(t) = v(t), u(0) = sinh(0) = 0 (2.40)

v'(t) = cosh’(t) = sinh(t) = u(t), v(0) = cosh(0) = 1

y(0) = 0 (2.39)

then, e“®) is substituted by:
w(t) = e*®

’ 2.41
w’(t) _ (eu(t)) _ w(t)-ul(t) — w(t) - o(t), w(0) = cu(0) — 1 ()

further, sin(w(t)) becomes
r(t) = sin(w(t))
r'(t) = cos(w(t))-w'(t) = s(t) - w(t)-v(t), r(0) = sin(w(0)) = sin(1) (2.42)
s'(t) = —sin(w(t)) - w'(t) = —r(t)-wt)-v(t), s(0) = cos(w(0)) = cos(1)

2This equation contains trigonometric, hyperbolic and exponential functions.

13

and cosh(?) has already appeared as v(t). At the end, we can also transform the inverse
value of v(t):

at) = 55 = o0
/ -2 / 2 1 1 (2.43)
q(t) = —v7(t) - (t) = —¢°(t) -u(®), ¢(0) = o0
The final system of ODEs is (2.44).
() =~ u®), q0) = 1
r'(t) = s(t)-w(t)-v(t), r(0) = sin(1)
s'(t) = —r(t) -w(t)-v(t), s(0) = cos(1)
u'(t) = v(t), u(0) = 0 (2.44)
V'(t) = u(t), v(0) =1
w'(t) = w(t) - v(t), w(0) =1
y'(t) = r(t)-qlt), y(0) = 0

2.3 Transformation into basic operations

Using the automatic transformation, each elementary function can be transformed into
basic operations — addition, subtraction, multiplication and division. The division can be
replaced by the multiplication; moreover, the subtraction can be replaced by the addition
with the opposite sign of the second argument (it can be performed either via multiplication
by —1 or using an unary minus).

2.3.1 Transformation into the minimal form

Now we have only additions and multiplications, so it is possible to use the commutative,
the distributive and the associative laws to rearrange an expression into its minimal form.
The following expression is taken as an example.

u = (x+2y)-(x—2y) (2.45)

The expression is parsed into the syntax tree in Figure 2.2.

/\

| _
/\ /\
X . X .
S S
2y 2y

Figure 2.2: Syntax tree

The transformation begins by determining the operation in the root node — multipli-
cation, so the transformations are performed on the left and right children nodes and the

14

result is a multiplication by terms (using the distributive law):
(x+2y)-(x—-2y) — x4z (—2y) +2y v+ 2y-(—2y). (2.46)

Now the expression can be rearranged (using the commutative law) and variables can be
merged (using the associative law and expressing multiplications as exponentiations)?:

z-ox4z- (=2 +2y-x4+2y (—2y) — 2°—4-y% (2.47)

2.3.2 Minimal form

The proposed algorithm leads to the unique minimal form if the result is sorted (assigning
indices to variables), coefficients a; are non-zero, at most one product is empty (n; = 0),
no variable is repeated within any term and no product is duplicated. The final minimal
form is described by a polynomial (2.48).

1]

m g
y = Zainv?ﬂ?" m,n; € No, 75 € N, a; € R\ {0}, vi; € Var (2.48)
=1 j=1

3Tt is a common formula (a +b) - (a — b) = a® — b*.

15

Chapter 3

Characteristics of MTSM

The thesis deals mainly with explicit MTSM. This method is characterized by high accuracy,
speed and flexibility. The method uses as many MTSM terms as needed to attain the
required accuracy (arbitrary order) and the accuracy does not depend on the step size.

3.1 Accuracy of calculation

Higher accuracy can be achieved using arbitrary precision arithmetic. For example, the
numerical solution of (3.1) is not accurate when using common arithmetic (double).

1 — cos(x)

lim —————= 3.1

wli)r(l) {1,‘2 ()

The limit can be solved analytically, using L.’Hospital’s rule twice, the correct value is

1 — cos(x)
2

= i S0 gy, cos@) L (3.2)

lim
z—0 2z z—0 2 2

x—0 xT

When solving the limit (3.1) numerically using double arithmetic, the result significantly
oscillates around the value 0.5 when x approaches zero — Figure 3.1a. However, when the
arbitrary precision arithmetic is used, the oscillation does not occur: the result approaches
zero smoothly — Figure 3.1b.

0.53 : : : : : : : 0.50000009 — : : : . . .
0.52 - g 0.50000006 |- R
0.51 - g 0.50000003 - R
05 | WW\W\NWW_‘ 0.50000000 R
0.49 - g 0.49999997 |- g
0.48 - g 0.49999994 |- g
0.47 ' ' ' ' ' ' ' 0.49999991 —! ' ' ' ' ' '
0 1 2 3 4 5 6 7 x107 1016 1014 1012 1010 108 106 10% 1072
(a) Using number type double (b) Using library MPFR

Figure 3.1: Numerical solution (approaching limit from right)

17

3.2 Speed of calculation

The speed of calculation using MTSM depends on the required precision and the step size.
The order of the method changes in accordance with the chosen parameters. Compare the
system of ODEs (3.3), which generates functions sin(¢) and cos(t),

y: =z y0) =0 (3.3)
z = —y, 2(0) =1

and (3.4), which generates e’.
w = w, w0) =1 (3.4)
Tables 3.1 and 3.2 summarize the average calculation times' and the maximal order.

The length of the time interval TMAX = 27 for (3.3) and TMAX = 100 for (3.4): the last rows
of the tables show the durations of one step.

dt\eps 1076 10-10 1020 dt\eps || 1076 | 10710 | 1020
0.01 2.30-1073 | 3.55-1072 | 5.30- 1073 0.01 3 5 8
0.1 3.65-10"% | 4.85-10~* | 8.00-10~* 0.1 5 7 12
1 6.90-107° | 9.60-107° | 1.50- 1074 1 10 14 22
z 5.06-107° | 6.65-107° | 1.05-10"* z 12 16 25
s 3.55-107° | 4.58-107° | 6.65- 107> T 17 22 33
2 2.33-107° | 2.88-107° | 3.89-107° 2 27 33 45
(a) Calculation time [s] (b) Maximal order
Table 3.1: Solution of ¢’/ = —y
dt\eps 10-6 1010 1020 dt\eps || 107¢ | 10710 | 1020
0.01 7.20-1072 | 830-1072 | 1.01-107! 0.01 18 19 22
0.1 1.01-1072 | 1.16 - 1072 | 1.40- 102 0.1 25 27 31
1 1.76 -1072 | 1.90- 1073 | 2.38 - 1073 1 41 44 50
10 421-107% | 4.52-107* | 5.69-10~* 10 87 91 102
50 220-107%1]229-107* | 2.52-1074 50 188 195 211
100 1.86-107% [1.90-107% | 1.98 - 10~ 100 282 291 312
(a) Calculation time [s] (b) Maximal order

Table 3.2: Solution of w’' = w

It is obvious from the tables that a bigger step size leads to a shorter calculation time,
regardless of the required accuracy. Tables 3.1b and 3.2b demonstrate that it is essential
to use a higher order when increasing the step size to maintain the required precision.

IThe simulation was reiterated many times since it is impossible to measure such small calculation times;
each calculation time is the time measured divided by the number of repetitions.

18

3.3 Stiff systems

MTSM is also capable of solving systems which cannot be solved by general methods (Euler,
RungeKutta, ...). One problematic group of problems is represented by stiff systems. As
an example, consider the following system of ODEs [40].

y =z, y(0) = 1

2= —ay—(a+1)z, 2(0) = -1 (3:5)

This system is stiff when the value of parameter a is large. The analytical solution is always
y = et and z = —e~! regardless of this parameter. Table 3.3 contains thirty significant
digits of the solution for a = 10234,

t Y z
1 -1
5 || 0.00673794699908546709663604842315 | -0.00673794699908546709663604842315

Table 3.3: Solution of stiff system

The table confirms that y = —z for given digits. Of course, multiple-precision arithmetic
has to be used (4kB numbers) — therefore, the accuracy of the result is high and only one
step has to be calculated. For more about stiffness, see [40].

3.3.1 Implicit form of MTSM

In general, stiff systems have to be solved using the implicit form of MTSM (or another
method designed specifically for stiff problems) which has a significantly larger area of
stability than the explicit form of MTSM — see [40]. Values y,+1 are calculated solving
(3.6) by some iterative method, for example Newton-Raphson [5, 38].

ORD
(=P)* &
Yn+1 = Yn — Z ! yfw)l (3.6)
k=1

See [3, 12] for more information about solving stiff systems using implicit MTSM and [27, 28]
for more about stiffness in initial-value problems.

3.4 Stopping rule

The stopping rule is used to determine the necessary order of MTSM during the calculation.
If an incorrect stopping rule is chosen, the solution of some problems can be incorrect. For
example, consider (3.7).

() = 1, z(0) =0

y(t) = 2°(t), y(0) =0

The analytical solution of the system is x(t) = t and y(t) = 0.25¢t*. The solution of
the system is incorrect for the default stopping rule used by the MTSM implementations —
absolute values of three consecutive terms less than EPS. Table 3.4 shows that the method
did not calculate higher-order terms in ¢ = 0.1 since the first three terms were zero — the
value should be 2.5 - 1075,

(3.7)

19

t Y exact
0 0 0
0110 0.000025
0.2 || 0.000375 | 0.0004
0.3 || 0.002 0.002025
0.4 || 0.006375 | 0.0064
0.5 || 0.0156 0.015625
0.6 || 0.032375 | 0.0324
0.7 || 0.06 0.060025
0.8 || 0.102375 | 0.1024
0.9 || 0.164 0.164025
1 0.249975 | 0.25

Table 3.4: Problem with stopping rule

Table 3.4 also demonstrates the principle drawback of the Euler method, because the
Euler method is the same as the Taylor method of the first order. Smaller step size only
increases accuracy, but the step size would have to be smaller than v/4 - EPS to attain the
maximal error of the Euler method smaller than precision EPS — the error is 0.25dt* from
the first step.

The problem appears only for polynomials; there is no problem in exponential solutions.
Therefore, the stopping rule has to be chosen very carefully to solve any problem correctly.

3.5 Principle of calculating MTSM terms

The following text is based on [26]. The method proposed in this thesis transforms electronic
circuits into electric circuits which are described by a system of m linear ODEs that can
be expressed in the form of (3.8).

"= anytan-z4 A+ aim - w+ by, y(0) = wo
2= ag1-y+an-z+ -+ agm - w+ ba, 2(0) = 2o

(3.8)
w = am1 Y+ amez+ -+ G W+ by, w(0) = wp

Each equation of (3.8) consists of m terms with coefficients a,s, where r denotes the index
of the equation and s denotes the index of the term. Further, each equation contains one
constant b, and an initial condition — y(0), 2(0), ..., w(0).

The first MTSM terms are expressed by (3.9) and they are denoted as DY, 1, DZ, 1,
oo, DWhp 1.

DYn,l = hy;t

= h-(a11-yn+a12-2n+ -+ aim - wy + b1)
DZnJ = hz;

= h-(ag1-yYn+ a2 - 2p+ -+ agm - Wy + bo) (3.9)
DWn,l = h-w;

= h'(aml'yn+am2'Zn+"'+amm'wn+bm)

20

The second MTSM terms (DY}, 2, DZ, 9, ..., DW, 2) can be calculated as follows.

DY, = g - DY,

= g (a11 - DYp1+a1a-DZpy+ -+ arm - DWp 1)
DZ,9 = g -DZ,,,

= g (a21 - DYp1+ a2 - DZp1+ -+ agm - DWy 1) (3.10)
DWy2 = g - DWW, 4

= g (@m1 - DYn1+ ama - DZp1+ -+ + amm - DWp1)

The higher order MTSM terms are calculated in a similar way.
If the stopping rule is met, the final result in the current time step is obtained as the
sum of individual MTSM terms.

Yntl = Yn T DYn,l + DYn,2 +--- 4+ DYn,ORDn
Zntl = Zn + DZn,l + DZn,2 +- DZn,ORDn

(3.11)
Wpt1 = Wy +DWy1 +DWyo+---+ DW, orD,

The calculation in the other time steps is performed in a similar way and the results obtained
by (3.11) then serve as the initial conditions for the next step. See [26] for more information.

3.6 Practical usage

MTSM can be used for solving various problems. This section introduces some of those
which can be effectively solved by this method.

3.6.1 Mechanical oscillator

The first example is the solution of a mechanical oscillator. The movement of the oscillator
is described by
v+ ky +asin(y) = 0 (3.12)

where parameter k is the attenuation of the oscillation and parameter « is the toughness of
the oscillator. The initial values are determined by the initial position

y(0) = o = 0,

and initial speed
y'(0) = vy = 15.

The system of two ordinary differential equations (3.13) is obtained by modifying the dif-
ferential equation (3.12).

(3.13)

The automatic transformation substitutes sin(y(¢)) with two differential equations (3.14).

u'(t) = v(t)-2(t), u(0) = sin(y(0)) = 0

V' (t) = —u(t)-2(t), v(0) = cos(y(0)) = 1 (3.14)

Finally, the autonomous form (3.15) is created, for which the generation of MTSM terms
is quite simple.

y(t) = 2(b), y(0) =0
Z(t) = —k-z(t) —a-u(t), z(0) = 15
u'(t) = v(t) - 2(t), u(0) = 0 (3.15)
V() = —ul(t) - 2(t), v(0) =1

By solving the system, the graph of the position and the speed is obtained — Figure
3.2a. The dependency of the speed on the position is shown in Figure 3.2b. The source
code can be found in Appendix A.3.

15 F T T T T =

10 + 1

0 1

2

3

(a) Position and speed

(b) Dependency of speed on position

Figure 3.2: Solution of mechanical oscillator

3.6.2 Calculation of a definite integral

MTSM is suitable not only for solving systems of ODEs but also for calculating a definite
integral. The function (3.16) is used as an example.

(z—1)

fz) = sin(ln(x+1)) ‘In(z+1) - P

(3.16)

The graph of the function with a filled area under the curve is shown in Figure 3.3a. The
calculation of the area is performed in the interval <0,1> — that means evaluating the
definite integral (3.17).

r+1

Agm<m@+D>JMx+D-wlydx (3.17)

The integral can be transformed into the ordinary differential equation (3.18)

(z—1)

TE1 y(0) = 0, (3.18)

y = sin (ln(x + 1)) ‘In(x 4+ 1) -

22

and the solution in time ¢ = 1 gives the result of the definite integral — see Figure 3.3b.

0.014
0.025

0.012

0.02

0.015
0.006
0.01
0.004

0.005
0.002

0 0.2 0.4 0.6 0.8 1

(a) Function (3.16) (b) Solution of ODE (3.18)

Figure 3.3: Calculation of definite integral

3.6.3 Fourier coefficients

Definite integrals are also used for calculating Fourier coefficients. As an example, consider
the function (3.19).

f(t) = 16sin°(t) + 4 cos(t) — sin?(t) + cos?(t) + 2sin(t) cos(t) — sin(5t) (3.19)
+ 5sin(3t) — cos(3t) — cos(2t) — sin(2t) — 10sin(t) .
The calculation is performed by expressing the Fourier coefficients for the function (3.19)

as integrals (3.20):
2T
f(t) - cos(kwt),

0 (3.20)

f(t) - sin(kwt),

ap —

A= 3

b, =
0

transforming it into the system of ordinary differential equations (3.21) and solving this
system (w = 1 rad/s).

- f(t) - cos(kwt), ar(0) = 0
(3.21)

==

- f(t) - sin(kwt), bk(0) = 0

Tables 3.5 and 3.6 summarize the results calculated in time ¢ = 27, which is the period
of the Fourier coefficients calculation.

ag aj as as a4 as
1.428 10718 | 3 | 4.390-10718 | 6.806-10~1% | 1.270-10"18 | 1.509 - 10~18

Table 3.5: Fourier coeflicients ay,

23

b1 b2 bs by bs
437210718 | —2.342-10718 | —5.998-10"18 | 2.682-10718 | 1.319-10!8

Table 3.6: Fourier coeflicients by,

The results in the tables show that the only non-zero coefficient is a; = 3 (other coef-
ficients are almost zero). Therefore, the function (3.19) can be simplified into the form
f(t) = 3cos(t). Figure 3.4 illustrates the solution of the system of ODEs (3.21).

Figure 3.4: Calculation of Fourier coefficients

Analytical proof

The function (3.19) can be simplified using trigonometric formulas [4].

f(t) = 16 (116 (10 sin(t) — 5sin (3t) + sin (5¢) >> +4 <le (3 cos(t) + Cos(3t))> + cos(2t)
+ sin(2t) — sin(5t) + 5sin(3t) — cos(3t) — cos(2t) — sin(2t) — 10sin(t)

f(t) = 10sin(t) — 5sin(3t) + sin(5t) + 3 cos(t) + cos(3t) — sin(5t) + 5sin(3t) — cos(3t)
— 10sin(¢)

f(t) = 3cos(t) O

24

Chapter 4

Solving Electric Circuits

Electric circuits with a harmonic (sine-wave) voltage source can be solved either symboli-
cally or numerically. If the voltage source is not a harmonic sine signal or if a simulation
of the transient response is required, then the circuit has to be solved numerically.

4.1 Phasor diagrams

This method is symbolic and solves a problem graphically. It represents voltages and
currents by vectors (phasors) in a phasor diagram. It is based on the knowledge that
the voltage on a coil is shifted by § before the current flowing through the coil and the
voltage on a capacitor is delayed by the same phase after the current flowing through the
capacitor. The relationship between phasors and the value of the voltage dependent on
time is illustrated in Figure 4.1. See [34] for more information.

v

Figure 4.1: Relationship between phasors and voltage [30]

4.1.1 Serial RLC circuit

Consider the circuit in Figure 4.2. Phasor I, which represents current i, is charted in
a phasor diagram; Ug, representing the voltage of the resistor, is in a phase with it; Uy, and
Uc (phasors for the voltages on the coil and the capacitor) are orthogonal to I. The sum
of all voltages gives the total voltage (phasor U).

25

13000
©

Figure 4.2: RLC circuit

The result for parameters w = 2-10° rad/s, R =08 Q, L =4-1071YH, C =2.5-107° F
is illustrated in Figure 4.3. Figure 4.3b shows the solution in time.

T T T T T T | >
0.4t 1
U —>
o —
03 f 1 Uue —>
Ur
02t .
01f .
0r —> A
o1 Y 1
1 1 1 1 1 1
0 01 02 03 04 05
(a) Phasor diagram (b) Solution

Figure 4.3: Solution of RLC circuit

4.1.2 Serial-parallel circuits

With a more complex circuit, e.g. in Figure 4.4, the phasor diagram is not as clear as in
the previous case.

Ly Ro

L, Ry

%.

)
Figure 4.4: More complex circuit

26

The result is shown in Figure 4.5 (w = 2-10° rad/s, R1 =0.5Q, Ry =2Q, L; = 2.5-107 1 H,
Ly=10""H, C = 1.25-10"10 F).

T T T T T T | ; T T T T T I
0.5 |- 1 le lc
lr, —> IR,
vl — u
0.4 4 U Uz
U, —> u, ——
T o
0.3 1 02 L2
Up, —> Un,
02t -
01t -
J N S]
1 1 1 1 1 1 1 1 1 1 1
01 0 01 02 03 04 0 1 2 3. 45 4909
(a) Phasor diagram (b) Solution

Figure 4.5: Solution of more complex circuit

4.2 Symbolic-complex method

Complex numbers can be mapped into vectors in the Gauss plane. This property can be
used to solve electric circuits using common algebraic operations in a complex domain.
Term capacitor reactance (capacitance) is introduced for a capacitor:
1 J
Xo = — = —— 4.1
© jwC wC (4.1)
and coil reactance (inductance) is established for a coil:

X, = jwL. (4.2)

Then the whole impedance of the circuit in Figure 4.4 can be calculated by complex
numbers.

X1, + Ry) - X WLy + Ry) - (— L

(XL, + Ro) C:ij1+R1+(JC‘.J2 2)(@0)

X, + Ro+ Xe]wLQ—G—RQ—WJ—C

RiD + Ry +wL1D—w3CL§—|—wL2—wCR§, (4.3)
D D J

D = w?C (w*CL3 + CRj —2Ly) +1

7z = XL1+R1+

7 =

4.3 Numerical solution
Now consider the numerical solution of electric circuits. Electric circuits can be solved

numerically using the well-known Kirchhoff’s laws [39]. As an example, the electric circuit
in Figure 4.6 is analyzed.

27

Figure 4.6: Electric circuit

The circuit consists of three resistors and two capacitors — a system of two ODEs (4.4) is
created:

1.
up, = azl, uc, (0) = 0
!/ 1 -
ug, = 6222’ ucy, (0) 0
. U—-Ux (4.4)
B R
’il — UA - U01
Ry
'L'2 _ UA - UCQ
Ry
Voltage U4 is determined by
1= i1+i2>

where i, 71 and iy are substituted:

U—-Us _ Us=Uc , Us=Uc,
R Ry Ry

and after a modification:

U-Rl-R2+U01-R-RQ—FUCQ-R'Rl

Us =
A R-Ri+R-Ro+ Ry -Ro

For parameters U =10 V, R=80Q, R =10Q, R, =40Q, Cy =1F, Cy =2 F, the
solution in Figure 4.7 is obtained.

28

Ucl
UC2

0k I 1 I I =
0 2 4 6 8 %102

Figure 4.7: Solution of electric circuit

4.3.1 Elimination of algebraic operations

The number of algebraic operations for the calculation of U4 can be decreased by adding
parasitic capacitor C), as demonstrated by Figure 4.8.

R
Ul th QRZ E—
Cy Csy
1 [

Figure 4.8: Electric circuit with parasitic capacitor

The accuracy of the approximation of voltage U, is given by the value of parasitic
capacity Cp. In practice!, the value of parasitic capacity C), can be up to 10 % of capacities
C1 and Cy. The lower the value of capacity C), chosen, the more precise the approximation
of voltage U4 obtained. On the other hand, by lowering the value of C), the stiffness of the
resulting system increases, but it is a minor problem for MTSM.

Figure 4.9 shows that a suitable value for capacity C, is 1 % of capacity C;. In this case,
the transient response, during which the capacitor is being charged and the value of the
voltage of the parasitic capacity does not correspond to voltage U4, takes approximately
one second.

'Regarding the tolerance of components.

29

Ucp —
ua

0 20 40 60 80 100 0 20 40 60 80 100

(a) C, = 0.1 F (b) Cp = 0.01 F

Figure 4.9: Comparison of Ug, and Uy

The direct-voltage source can be replaced by the alternating-voltage source?. If the
value of capacity C, is 1% of capacity Cy (Figure 4.10b), the solution converges better
than in the case of 10 % of capacity Cy (Figure 4.10a).

Ucp
ua
1 - -
0.5 | { / \
0 \ \ B
-0.5 | B
0 20 40 60 80 100 0 20 40 60 80 100
() C, =0.1F (b) C, = 0.01 F

Figure 4.10: Comparison of Ug, and Ux for alternating-voltage source

4.3.2 Shortening the transient response

As already stated, a transient response occurs when approximating voltage U4 with a para-
sitic capacity. This response can be shortened not only by lowering the parasitic capacity
but also by using compensating capacity Cj — see Figure 4.11.

*With w = 0.2 rad/s.

30

1 Ca

|

i
Ry Ro
Ul — O
l C

Figure 4.11: Electric circuit with compensating capacity

By solving the electric circuit, a much shorter transient response is obtained — Figure 4.12:
in this case, the transient response fades out by 107 s.

ua ua

T 0.7 _

B 0.6 B

B 0.5 |- B

. 04 .

m 0.3 n

m 0.2 n

m 0.1 n

1 E (o= i I 1 1 B
8 %105 0 2 4 6 8 X105

(a) Cx = 0.001 F, R; = 0.01 Q (b) C, = 0.001 F, R; = 0.001 ©

Figure 4.12: Transient response of circuit with compensating capacity

4.4 Telegraph line

The telegraph line is a simple electric circuit which can be used for comparing various
approaches to calculation since parameters can be changed as well as the complexity of the
circuit (number of segments). The telegraph-line model can be described by the partial
differential equations (4.5) [43].

2 2
A GO B e B B 3 Leac oD S OE B A COL)
0%i(z,t) di(x,t)) O%i(x,t) '
L~CT+(L-G—I—C-R) +R-Gw(az,t)—w—0

The circuit in its simplest form consists of a source of voltage, two resistors R and Ro,
N capacitors and N coils. Parameter N determines the number of segments, which can be
relatively large. Various types of voltage sources can be used: harmonic sine, an impulse

31

etc. The behavior of the model can be observed by the analysis of input voltage u; and
output voltage us — see Figure 4.13.

Rl Ll LN— 1
S) S s
ui uq U9

— — 0, |

Figure 4.13: Telegraph equation model

The value of the output voltage can be influenced by the sizes of the input (R;) and
output (Rg) loads. If the line is adjusted, (4.6) has to hold.

Ry = Ry = é (4.6)
The same value for all inductances is used:
L = 1078 H,
and the same value for all capacitors:
C = 1002 F.

Then, to adjust the line, both resistances have to be set to

Ry = Ry = 100 Q.

4.4.1 Symbolic solution

If a harmonic voltage source is used, the problem can be solved using complex numbers that
represent impedances. Resistors have real impedances while capacitances and inductances
are represented by imaginary impedances. All impedances are complex numbers, so they
can be combined using the basic mathematical operations:

XL = jwlL, X¢ = _w%” Xiyge = Xy +Ro, Xoyinr, =

XonXLyRs
Xow + Xinry

Figure 4.14 shows the calculated voltages for 50 segments. A harmonic sine-wave signal
was chosen as a source of voltage with frequency w = 10° rad/s and amplitude 4 = 2 V.

32

0.5 - Ugg = Uy,

- - Ucy, Ugyg —>
0 Ucys Uy 3
Ucye —> Uc,
Uy, > Uc,,

Figure 4.14: Voltage phasors

If the sine waves are calculated using phasors from Figure 4.14, the symbolic solution
of the telegraph line is obtained (Figure 4.15).

R Uey Ucz
"Z:’ 0000&@ ’.’,., .’..p’o /// 0 ":” HEZ Ugn
SN /‘o‘o’o‘ // oS 28
/0 No 0“/ c, — Yoy
."’. “0 ,, ,/ ,/ Uc; C3o
AN 0,/ :.:.0,/ “w uc, o
o’o‘o’o‘ °. i g
8 33
, " \ // Uey — Ugy,
Uc,, — U,
/ J /// // o — i
m’ oo o
/ / i ,w\\ U U
, / /) \,‘ Ucys Ucyo
// /// (i \\0’5 T —_a
N er = U
0 \ V00 (0 Ucye Ucyy
‘“ / .‘.‘ Uy Ucys
W\. N ve Ucp
// .\\." /N chz 8@7
"’ W’ n / 0’0’0’:’: | oveus—
m o‘o‘o‘ \/ “?0 \\\ ” -
/ N /]
% m)
‘ ‘0‘0,:"::\\ ‘.:,:, ':o:o:ﬁ;\ I.‘o
o 1 6 x10°

Figure 4.15: Symbolic solution

4.4.2 Numerical solution

The symbolic solution can be used only for harmonic input signals. If the input is not
a harmonic signal or the analysis of the transient response is required, the numerical solution
has to be used. Of course, the numerical solution can also be used for harmonic input
signals. The system of equations (4.7) is equivalent to the previous symbolic calculation.

33

The appropriate telegraph-line model can be seen in Figure 4.13.

v = wo, u(0) = 0
Vo= —wu, v(0) = U
. 1
1= R—l(u ucy)
1, .
u/01 = 6 (l - ZLl)) ucy (O) =0
. 1 4.7
Z/L1 = Z (ucl - uC2)) % (0) =0 ()
1 .)
UIC’Q = 6 (1’L1 - ZL2)) UC, (0) =0
y 1))
Ly = Z (UCN — Ry - ZLN) y ULy (0) =0

Figure 4.16 shows the numerical solution of the same system that was solved symboli-
cally. The numerical solution is similar, but the transient response can be seen which cannot
be described by the symbolic solution. The transient response is also responsible for the
apparent roughness — confirmed by MATLAB solvers (ode45, ode23s and ode23t).

Figure 4.16: Numerical solution

4.4.3 Dependency of output voltage on input voltage

In this subsection, the dependency of output voltage on input voltage is shown; the com-
parison is performed for 100 segments and parameters L and C' have the same values as in
the previous sections.

The plots on the left represent voltage u; at the beginning of the telegraph line (also
designated as the input voltage). The corresponding plots on the right represent voltage
ug at the end of the telegraph line (also designated as the output voltage). Both plots in
each pair have the same scale.

34

If the line is adjusted, then the results obtained are as expected — no bounces occur,
the amplitude of the output voltage is almost the same as the amplitude of the input
voltage, and the output signal is only delayed. Figure 4.17 shows the solution for a source
of harmonic input signal with amplitude A = 1 V and angular frequency w = 2-10° rad/s.

uy ' ' ' uz
0.4
02t
0
02
0.4 |
0 3 6 9 12 15,09 0 3 6 s 12 15 %109
(a) Input voltage (b) Output voltage

Figure 4.17: Adjusted telegraph line — response for harmonic signal

If the input voltage is an impulse modeled by one half of the sine wave (the values of
the parameters are the same as in the previous example), the solution in Figure 4.18 is
obtained.

T T T T T T T
0.5 - : 4" 05 |- 42
0.4 F g 0.4t
0.3 g 03t
0.2] 02
0.1 g 01t
of 0
1 1 1 1 1 1 1
0 3 6 9 12 15 409 0 3 6 9 12 15 99
(a) Input voltage (b) Output voltage

Figure 4.18: Adjusted telegraph line — response for impulse

35

If we change Ry = 1 Q and Ry = oo Q (the circuit is opened from the right, oo is
modeled as 10'2), the solution in Figure 4.19 is obtained. The output signal is delayed
and amplified (this can cause damage to the connected equipment).

(a) Input voltage

18

24

30

36

x10°

uy

12

18

24

30

36

(b) Output voltage

Figure 4.19: Open telegraph line — response for harmonic signal

Again, if the source of voltage is changed to an impulse input, the result is

Figure 4.20.
2 T T T T T T -
15 .
1h]
0.5]
ol
-0.5 + .
1k i
15 1
2 i i i i i i
0 5 10 15 20 25 30 x199

(a) Input voltage

u1

15

0.5

-0.5

-1.5

109

uz

shown in

Figure 4.20: Open telegraph line — response for impulse

(b) Output voltage

uz

For Ry = 100 © and Ry = oo €, the result is rather unexpected. The input impulse
bounces back, see Figure 4.21. This behavior can be used to detect where the line is cut.

0.8

0.6

0.4

0.2

(a) Input voltage

21 109

uy

0.8

0.6

0.4

0.2

uz

(b) Output voltage

Figure 4.21: Open telegraph line with R; = 100 Q2

21 %109

If we raise R; = 300 €2, the impulse bounced back even has a higher amplitude than
the input impulse, see Figure 4.22.

0.5

0.4

0.3

0.2

0.1 |

18 24 30 36

(a) Input voltage

Figure 4.22: Open telegraph line with higher R

42 w109

Uy

0.5

0.4

0.3

0.2

0.1

37

uz

18

(b) Output voltage

24

30

36

42 «109

4.5 Parallel methods

A few parallel methods are mentioned in this section. A comparison of the time consumption
of parallel and serial approaches is summarized in tables. A system of differential-algebraic
equations can be represented by the block scheme in Figure 4.23.

Figure 4.23: Parallel cooperation [36]

All integrators work concurrently; therefore, the calculation can be performed in sepa-
rate threads of a processor. The communication among the threads consists only of state
values.

4.5.1 Generic parallelization

It can be observed from Figure 4.23 that the independent parts could be calculated in paral-
lel. The first approach to the parallel solution is based on solving the individual equations
in parallel. Typically, a server contains several processors (M) that have several cores (N).
Processors can support hyper-threading (multiple threads per core) — the number of threads
(O) is typically two or one (the latter for processors without support for hyper-threading).
Therefore, it is possible to launch M - N - O software threads which wait for the work
provided by the master thread.

For this approach to parallelization, it is essential that no thread uses any resources
which can be changed by other threads. This behavior can be attained by enabling the
possibility of modifying only the part of the memory used by the equation assigned to the
thread which contains higher derivatives (all except the first one). The memory containing
the first derivative and the state value and the memory of other equations are marked
as unchangeable. Therefore, the first derivative expressions of all equations are strictly
constant and therefore usable by all threads without locking. Higher derivatives are not

38

required by other threads — their calculation is hidden since every derivative contains only
variables and all derivatives are expanded.

This generic approach separates the parallelization from the method used for calculation;
therefore, it can be used for any method (RungeKutta, Adams-Bashforth, MTSM etc.)
but the implementation of the method has to respect these restrictions.

This approach and its advantages can be demonstrated using the model of the telegraph
line. First, the calculation times of a serial solution were analyzed. The experiments were
undertaken 33 times; the medians of the calculation times measured are shown in Table 4.1.
The first column contains numbers of segments. The next two columns (53 and 64 bits)
show the durations when internal number types (double and long double) are used. The
remaining columns were obtained using arbitrary precision arithmetic (library MPFR [19]).
It is obvious from the table that the number of segments S and arithmetic width significantly
influence the calculation times.

S\bits 53 64 128 256
100 1.212 1.347 2.895 3.589
200 9.333 5.966 9.835 | 11.194

300 12.189 | 13.346 | 20.752 | 22.720
400 21.513 | 23.316 | 35.591 | 38.160
500 33.409 | 35.991 | 54.260 | 57.449
600 47.830 | 51.161 | 76.607 | 80.580
700 64.667 | 68.992 | 102.437 | 107.671
800 83.757 | 89.799 | 131.749 | 138.469
900 105.252 | 113.223 | 165.394 | 173.104
1000 128.834 | 138.929 | 202.695 | 211.560

Table 4.1: Serial solution [s]

Further, the calculation times of the parallel solution were measured. The experiments
were again undertaken 33 times, this time using 24 threads, on the same server as before;
the advantage of six processors with two cores each with two threads was now fully utilized.
The calculation times are shown in Table 4.2.

S\bits 53 64 128 256
100 0.443 | 0.381 | 0.656 | 0.830
200 1.749 | 1.469 | 1.958 | 2.113
300 3.923 | 3.220 | 4.022 | 3.907
400 6.933 | 5.708 | 6.883 | 6.321
500 10.808 | 8.814 | 10.327 | 9.182
600 15.463 | 12.723 | 14.677 | 12.768
700 20.971 | 17.316 | 19.596 | 16.822
800 27.376 | 22.327 | 25.397 | 21.512
900 34.606 | 28.319 | 31.710 | 26.300

1000 42.697 | 35.220 | 38.787 | 32.354

Table 4.2: Parallel solution [s]

Table 4.2 shows that the parallel solution is significantly faster than the serial one. The
acceleration of parallel to serial solution is shown in Table 4.3.

39

S\bits 53 64 128 | 256
100 2.736 | 3.535 | 4.413 | 4.324
200 3.049 | 4.061 | 5.023 | 5.298
300 3.107 | 4.145 | 5.160 | 5.815
400 3.103 | 4.085 | 5.171 | 6.037
500 3.091 | 4.083 | 5.254 | 6.257
600 3.093 | 4.021 | 5.220 | 6.311
700 3.084 | 3.984 | 5.227 | 6.401
800 3.060 | 4.022 | 5.188 | 6.437
900 3.041 | 3.998 | 5.216 | 6.582

1000 3.017 | 3.945 | 5.226 | 6.539

Table 4.3: Acceleration

As Table 4.3 shows, the acceleration does not correspond to the number of the threads
launched. The problem can be found in shared resources, like the operational memory,
limited processor/motherboard caches, narrow buses etc. However, a considerable accelera-
tion is achieved.

4.5.2 Acceleration for linear ODEs

Generic parallelization achieves a significant acceleration — but for linear ODEs, the cal-
culation can be accelerated even more. The main problem with parallel calculation is
the inter-thread communication that slows the calculation down significantly. If the com-
munication is avoided, the solution can be obtained faster. Very interesting results were
published in [41].

Adaptation of the generic formula

The generic formula of explicit MTSM for the calculation of the next values

ORD
yk

Yltn +hn) = >
k=0

) (t,
k(')hg, (4.8)

where ORD is maximal order, can be easily adapted for parallel computations, especially
for systems of linear differential equations. These systems can be described by (4.9):

Y = A-y+b (4.9)

where A is a Jacobian matrix and vy, b are column vectors. This form can be used for a clear
description of very large systems.
Higher derivatives can be expressed:

y” — Ay/ — A2y+Ab

y® = Ay AR p (4.10)

and after substituting the expression (4.10) into the formula (4.8), (4.11) is obtained.

ORD

Y(tn + hn) = y(tn) +
k=1

Alc X n Alcfl .
y(t)]j O (4.11)

40

If the sum is split, (4.12) is obtained

ORD 4k ORD 41
Y(tn + hp) = <I+ > mhﬁ) y(ta) + Y Thij (4.12)
k=1 k=1
and for fixed step size h:
ORD ORD
Ak AF-1.p
Ynt+1 = (Z k,h’“) Ynt+ Y — h* (4.13)
k=0 k=1 ’
which can be transformed into
Ynt+1 = A “Ynp + B (414)

where A is a transformed matrix and b is a transformed vector.

A AR
k=0
4.15
R ORD Ak_l b ()
b = h¥
k!
k=1
The conversion into the parallel version is now evident. Partial sums
ORD 4
N ANE+1-1 Nl A
A = —— h .16
! £ (Nk+1)! (4.16)

are computed in N threads® and there is no need for any communication or synchronization
between threads except for loading the matrix at the beginning and handing back computed
partial sums at the end. The reason for decreasing the exponent by one is single computation
of partial sums for both the transformed matrix and the transformed vector (otherwise,
double calculation would have to be performed).

The final transformed matrix A and transformed vector b are calculated afterwards (the
sum is calculated only once):

>
|

(éAl).AH

()

As the problem of the telegraph line is linear, the problem can be also described using only
matrix A and vectors b and yg, where yl = (uo,vo,ugl,igl, . ,iOLN) is a vector of the

(4.17)

v
Il

Comparison of the approaches

31-based indexing is used.

41

initial conditions.

0 w 0 0
~w 0 0 0

19 1 1

R1C »C C

0o 0 1 0
A=190 0o o &
0 0 0 0

The calculation times for linear systems which were computed in parallel are shown in

0 0

0 0

0 0

1

-1 01

0 -3

.. &0
1

0o ... 1

o O OO O

SN

Table 4.4.

S\bits || 53 64 | 128 | 256
100 || 0473 0410 | 0538 | 0.693
200 || 1.749 | 1.447 | 1.457 | 1.501
300 || 3.862 | 3.165 | 2.895 | 2.637
400 || 6.735 | 5.572 | 4.794 | 4.045
500 | 10.369 | 8.602 | 7.197 | 5.597
600 | 14.938 | 12.385 | 10.108 | 7.470
700 || 20.290 | 16.786 | 13.474 | 9.561
800 | 26.360 | 21.861 | 17.163 | 11.867
900 | 33.077 | 27.682 | 21.410 | 14.443

1000 || 41.212 | 34.216 | 26.025 | 17.169

Table 4.4: Parallel solution of linear ODEs [s]

Table 4.5 compares both approaches to parallelization — the generic approach (see Sec-
tion 4.5.1) and acceleration for linear ODEs* (Section 4.5.2). The acceleration is already
not as high; moreover there is a limitation for linear systems of ODEs.

S\bits 53 64 128 | 256
100 0.937 | 0.929 | 1.219 | 1.198
200 1.000 | 1.015 | 1.344 | 1.408
300 1.016 | 1.017 | 1.389 | 1.482
400 1.029 | 1.024 | 1.436 | 1.563
500 1.042 | 1.025 | 1.435 | 1.641
600 1.035 | 1.027 | 1.452 | 1.709
700 1.034 | 1.032 | 1.454 | 1.759
800 1.039 | 1.021 | 1.480 | 1.813
900 1.046 | 1.023 | 1.481 | 1.821

1000 1.036 | 1.029 | 1.490 | 1.884

Table 4.5: Acceleration of linear heuristic

4Performed together with generic parallelization.

42

o O O o o

Yo =

coodo

The calculation times of the parallel computation with heuristic for linear systems com-
pared to the calculation with no acceleration are shown in Table 4.6.

S\bits 53 64 128 256
100 2562 | 3.285 | 5.381 | 5.179
200 3.049 | 4.123 | 6.750 | 7.458
300 3.156 | 4.217 | 7.168 | 8.616
400 3.194 | 4.184 | 7.424 | 9.434
500 3.222 | 4.184 | 7.539 | 10.264
600 3.202 | 4.131 | 7.579 | 10.787
700 3.187 | 4.110 | 7.603 | 11.261
800 3.177 | 4.108 | 7.676 | 11.668
900 3.182 | 4.090 | 7.725 | 11.985

1000 3.126 | 4.060 | 7.788 | 12.322

Table 4.6: Total acceleration

The acceleration is relatively high; the more bits for numbers used, the greater the accelera-
tion attained — a larger step size can be chosen.

43

Chapter 5

Solving Electronic Circuits

The solution of electric circuits was discussed in the previous chapter. This chapter focuses
on electronic circuits. These circuits contain not only resistors, capacitors and coils, but
also semiconductors.

5.1 Semiconductors

Semiconductor components are described in this section. The analysis of a diode is per-
formed first, then a transistor is also analyzed.

5.1.1 Diode

A diode is defined via exponential Volt-Ampere characteristic that can be expressed by
iq = a- (d"“d - 1) (5.1)

where a and b are material parameters (e.g. a = 1078, b = 50). Consider the simple
electronic circuit in Figure 5.1.

Figure 5.1: Electronic circuit with diode

This circuit can be solved iteratively, for example using the Newton—Raphson method — see
Figure 5.2; the numbers represent the order in which the tangents/normals are constructed —
for more see [38].

45

u

Figure 5.2: Solution by Newton—Raphson method

This example can also be solved numerically. First, the expression (5.1) is differentiated:
i, = a-e o), (5.2)
then the exponential is substituted with the expression iy + a:
i, = (ig+a)-b-ul, (5.3)
further, voltage uq is expressed and substituted into (5.3):
iy = (ig+a)-b-u —(ig+a)-b-R-i, (5.4)
and at the end, the expression (5.4) is adjusted to the explicit form:

il = %u' ia(0) = 0. (5.5)

The problem is, of course, with the derivative of input voltage, but it can be solved
by the method of generating differential equations. If the input voltage is a harmonic
sine signal u = A - sin(wt), where amplitude A = 1 V and frequency w = 1 rad/s, the
system of three ordinary differential equations (5.6) is obtained (in which the automatic
transformation has already been performed). For another input voltage, e.g. u =1 — 6_3,
the procedure would be analogical.

) b(ig+ a))

/ p—y _— p—

‘T 1T bR (ig+a) ia(0) = 0

u = v, u(0) = 0 (5.6)
v = —u, v(0) = 1

46

By solving the system (5.6), the result in Figure 5.3 is obtained.

0 5 10 15 20

Figure 5.3: Solution of system

5.1.2 Transistor

The transistor can be solved analogically to the diode, using the Newton—Raphson method.
The solution is illustrated in Figure 5.4 — the numbers represent the order in which the
tangents/normals are constructed.

, B, lz=200pA
1 5
P 1
_N
B,
6
4
1 2 46 s Iz =20pA
3
AZ
Ay
Uy Uce

Figure 5.4: Solution of electronic circuit with transistor

5.2 CMOS

This section of the thesis is based on [1]. Complementary Metal-Oxide-Semiconductor
(CMOS) technology is assumed since it is the most widely used technology in electronics.
The idea and the basic concepts of the CMOS circuits design were invented by Frank
Wanlass. The fundamental idea of using complementary MOS devices (positive PMOS and

47

negative NMOS transistors) was quite novel at the time due to the rising popularity of the
Bipolar Junction Transistor as a replacement for the vacuum tube.

Today, the CMOS technology is still dominant for manufacturing integrated circuits.
It is likely that it will be dominant for the foreseeable future since CMOS transistors are
manufacturable, have low power requirements, are low-cost and scalable. This scalability
was first observed and described by Gordon Moore (founder of Intel, 1965) in Moore’s law.
This law states that the number of devices on a chip will double every 18 to 24 months
[32]. The gate lengths of the initial CMOS transistors were considerably longer than they
are today and an increasing number of smaller transistors can be fitted onto the chip.

CMOS devices have high noise immunity and low static power consumption. One tran-
sistor of the pair is always off and the significant power draw occurs while switching between
states (on and off). It is primarily this behavior that makes the CMOS technology useful
for the implementation of VLSI circuits.

See [9] for more information about CMOS, [25] for more general information about the
construction and design of analog and hybrid computers, and [29] about the system on
a chip and integrated design. The fabrication process is explained in [45].

5.3 Approaches to VLSI simulation

In this section, the approaches to Very Large-Scale Integration (VLSI) simulation are briefly
discussed. Two different approaches are mentioned — SPICE and FOS.

5.3.1 SPICE

SPICE is widely used for analog circuits simulation since it can compute the full large-signal
behavior of arbitrary circuits. SPICE uses a few numerical methods for numerical integra-
tion. The Newton integration method is suitable for finding the solution of circuits with
non-linear elements. The sparse matrix method is used to save memory by storing only
non-zero elements. The implicit integration method is used to integrate the differential
equations that describe the circuit reactances.

Numerical integration is necessary for analog circuits simulation. SPICE uses second
order integration methods. Most SPICE implementations follow Berkeley SPICE and pro-
vide two forms of second order implicit integration: Gear and trapezoidal. Trapezoidal
integration is both faster and more accurate than Gear; however, trapezoidal integration
can cause numerical artifacts. These artifacts manifest themselves as an oscillation around
the precise solution in each time step. See [13] for more information.

5.3.2 FOS

VLSI circuits were initially simulated in Fast ODE Solver (FOS) [24], which was primarily
designed for the solution of general ODEs with the integrated support of arbitrary precision
arithmetic. FOS supports several numerical methods including MTSM, which is used in
the thesis.

General ODEs do not need to be reassembled very often. In contrast, the ODEs de-
scribing VLSI circuits have to be reassembled frequently. For example, the ODEs in (5.7)
have to be reassembled whenever the input changes from true to false and vice versa. Using
selective reassembly, the computation was accelerated 20-50 times. Due to this acceleration,
it was possible to simulate the 512-bit adder (almost VLSI) in approximately 90 minutes.

48

As this acceleration was not sufficient, a specialized system was developed for VLSI simu-
lation. Thanks to this system, a circuit with over 1 million transistors was simulated in
approximately 180 minutes using 7.5 GB of RAM.

The three-address instructions that accelerate the computation in FOS were further
omitted because of high memory usage. CSM produces a system of linear ODEs; each
MTSM term is calculated from the previous term. Thanks to this approach, the calculation
of the same system now uses less memory — less than 320 MB (in contrast to the previous
7.5 GB) — and moreover, it is faster. When calculating the voltage MTSM terms, only
one addition and two multiplications are used. When calculating the MTSM terms of the
current, the number of additions is the same as the number of inputs.

5.4 Capacitor Substitution Method

In this section, the Capacitor Substitution Method (CSM) is introduced. It is a sophisti-
cated approximation of electronic circuits consisting of CMOS transistors by electric circuits
that consist only of capacitors and resistors. These circuits are suitable for further simula-
tion.

The general purpose transistors N3306M and P3306M were chosen for simulation. The
corresponding SPICE models of these transistors follow!.

1 | .MODEL N3306M NMOS VTO0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
+ CGS0=28E-12 CGDO0=3E-12 CBD=35E-12 PB=1

.MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
+ CGS0=28E-12 CGDO=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

=W N

The behavior of SPICE models was taken as the reference output. The basic logic gates
are modeled using CSM as described below.

5.4.1 CMOS inverter

Figure 5.5a presents the scheme of a CMOS inverter. The inverter consists of PMOS and
NMOS transistors. The function of this scheme can be demonstrated by the electric circuit
in Figure 5.5b. This logic gate is necessary for AND and OR gates construction when De
Morgan’s laws cannot be used — for example, in the case of CLA (see next chapter).

R;

Out

(a) Electronic circuit (b) Electric analogy

Figure 5.5: Inverter [44]

'Retrieved from http://www.datasheetarchive.jp/.

49

http://www.datasheetarchive.jp/

Logical one is represented by high voltage (3.3 V for recent CMOS transistors?); logical
zero is represented by low voltage (0 V). The behavior of the inverter is as follows:

— if A =1, the PMOS transistor (upper one) is closed and the NMOS is open;
— if A =0, the PMOS transistor is open and the NMOS is closed.

The corresponding SPICE model of the inverter is shown as the abbreviated SPICE
netlist below (the capacitor smooths the output). The full version of the SPICE source
code can be found in Appendix D.1.

Vdd 1 0 DC 3.3

Ri 21 0.1

* A =1, 0

V3 3 0 PWL(O 3.3 1e-07 3.3 1e-07 0 2e-07 0)
* not (A)

M4a 4 3 2 2 P3306M

M4b 4 3 0 O N3306M

C4c 4 0 1p

TR W N~

-~

oo

Figure 5.6 shows the output of the inverter using SPICE. The input is logical one in
the interval ¢ € (0,1077) [s] and logical zero otherwise. The expected result is: if input A
is logical one, then Out corresponds to logical zero; if input A is logical zero, then Out
corresponds to logical one.

Out

25

15

0.5 i

0 t { I B
0 5 10 15 x108 [s]

Figure 5.6: Inverter — SPICE [V]

The curve in Figure 5.6 is similar to the curve for charging the capacitor. To develop
the substituting circuit, the basic concept from electric circuits simulation is used. Each
transistor should be substituted by a capacitor which has the input voltage appropriate to
the state of the transistor.

When the transistor is closed, the capacitor has to charge; when the transistor is open,
the capacitor has to discharge. The input voltage can be controlled by switching the values
of resistors, Ry, for an open transistor and Ry for a closed transistor. The values of the
resistors are denoted as R4, Ry, Rp or Rz depending on the value controlling the switch.
Therefore, the substitution in Figure 5.7 is performed.

2The value depends on the logic used.

50

1 o
L |
iA _
A77
RH RL _: Cl
Ul@ > Out
A, .
Ry R — G

Figure 5.7: Inverter — substituted by CSM

If input A is logical one?, the PMOS transistor is closed — the upper part of the circuit
is switched into the high-resistor branch (with Ry) — and the NMOS transistor is open —
the lower part is switched into the low-resistor branch (with Ry). The system of ODEs
(5.7) for this regular electric circuit can be constructed (the first algebraic equation is in
explicit form; therefore, value i can be used directly in other equations); capacitor C is
precharged to avoid a considerable initial transient response.

) 1
1 = —'-<U—ucl—u02>
U, = L. i—i-uc ucy (0) = 3.3 (5.7)
! Cq Ry ') ! ‘
1 |
up, = Cb-(z—m-u@), uc,(0) = 0

Parameters R;, C1, Co, Ry, and Ry can be determined using the MATLAB function
greyest. This function can estimate the parameters of linear models to correspond with
the SPICE model. The system is described by

¥ = Az + Bu
(5.8)

y = Cx+ Du
where « is a vector of variables, A is a Jacobian matrix, B is a matrix/vector of constants,
u is a vector/scalar of inputs and C and D define how to evaluate output value y. The
expressions in (5.9) describe the transient response of the inverter when toggling the output

3That is more than half the nominal voltage value.

o1

from logical zero to logical one.

o Rr+R; 1 U
A = (_leiLRi _Rglfki) B = (Cb.Ri)
CaR; CoRyR; CoR;
cC=(01) D=0 (5.9)

.'L':(ucl> u =1
Uy,

Figure 5.8a shows the solution of (5.7) for parameters U = 3.3 V, R; = 0.120792 €,
Cp = 0y =3.851953-107° F, Ry, = 0.601435 Q, Ry = 10'° Q. If input A is logical one (i. e.
0 ns < time < 100 ns), then Out corresponds to logical zero; if input A is logical zero
(100 ns < time < 200 ns), then Out corresponds to logical one. Figure 5.8b (solution by
SPICE) is included for comparison.

Out

Out

0 5 10 15 %1078 [s] 0 5 10 15 %108 [s]

(a) CSM [V] (b) SPICE [V]

Figure 5.8: Inverter — solution

The error of the approximation is shown in Figure 5.9. The approximation error is relatively
high (over 1 V) during the transient response, but the most important fact is that it is low
in the stable state.

Err

0.8 -

0.6

0.4 -

0.2 -

0

0 5 10 15 x1078 [s]

Figure 5.9: Inverter — approximation error [V]

The transient responses for CSM and SPICE correspond quite well. The difference between
responses is caused by the approximation. The important aspect is that the resulting values
after the transient response and the lengths of the transient responses are similar.

52

5.4.2 CMOS NAND

The scheme of CMOS NAND is shown in Figure 5.10a and the function of this electronic
circuit is explained in Figure 5.10b. This logic gate forms the cornerstone of computer logic;
any logic function can be constructed using only NANDs (with De Morgan’s laws). The
NAND consists of two parallel PMOS transistors and two serial NMOS transistors.

R;

|
> Lot
i
e

— Out ¢— Out
A - -
B - =
(a) Electronic circuit (b) Electric analogy

Figure 5.10: NAND [44]

The NAND logical inputs are given in Table 5.1. As mentioned earlier, they control the
values of resistors (depending on opening/closing the transistors in the electronic circuit).
The time domain is divided into equally long segments.

Ajf1]1]0
Bi1|0|0]1

Table 5.1: NAND — input

CMOS NAND can be solved using the following SPICE netlist (abbreviated form; the
full source code can be found in Appendix D.2):

l |vdd 1 0 DC 3.3
2 |Ri 21 0.1

3 | A =1, 1, 0, O

1 |v3 3 0 PWL(O 3.3 1e-07 3.3 1e-07 0 2e-07 0)
5|« B =1, 0, 0, 1

6 |v4ad 4 0 PWL(O 3.3

7 | * nand (A, B)

8 |M5a 5 3 2 2 P3306M

5e-08 3.3 5e-08 0 1.5e-07 0 1.5e-07 3.3 2e-07 3.3)

9 |M5b 5 4 2 2 P3306M
10 |MBc 5 3 6 6 N3306M
11 |M5d 6 4 0 0O N3306M
12 | C5e 5 0 1p

The transformation of NAND is analogical to the transformation of the inverter. The
only difference is that it consists of two pairs of transistors. It is shown in Figure 5.11.

53

Ry Ry, - Cl Ry Ry, - CQ

> Out

Ru R, — C4

Figure 5.11: NAND - substituted by CSM

Capacitors C1 and Cy are parallel; therefore, they can be merged into one capacitor
C1o = C1 + Cs; see Figure 5.12.

G Ru R —— G —

Ry

o » Out ---- > Out

Figure 5.12: NAND — merging capacitors

54

The circuit in Figure 5.11 is described by (5.10)%; capacitor Cys is precharged to attain
the initial value of zero.

. 1
1 = E (U—uc12 UCs uc4>
1 R4+ R5
ulCm = C(- RA RB 'u012>? qu(O) = 33
112 R (5.10)
U/Cvg = 63 . <Z — RiA . UC’3> s UC’3<0) =0
, 1 . 1
UC4 = 074 Z—RiB'Uczl s UC4(0) =0

The solution for the values from Table 5.1 is shown in Figure 5.13. The transient
responses in both figures begin at 50 ns and 150 ns. The circuit truly behaves like the
NAND gate and the result using CSM is again virtually identical to the result obtained
using SPICE; all transient responses reach a steady state by 50 ns.

sh V’ Out M 1 ou
25 1 .

5l | i
15 1 .

1l | i
05 1 .

o ‘ ‘] ‘ ‘ i

0 5 10 15 y10%(s 0 5 10 15 x10%(s]
(a) CSM [V] (b) SPICE [V]

Figure 5.13: NAND - solution

The error of the approximation is shown in Figure 5.14.

0 5 10 15 x108 [s]

Figure 5.14: NAND — approximation error [V]

U =33V,R =0.120792Q, C; = Cy = C3 = Cy = 3.851953-10 ° F, C12 = C1+C>, Rr = 0.601435 Q,
Ry =10 Q

95

5.4.3 CMOS NOR

The scheme of CMOS NOR is shown in Figure 5.15a and the function of this electronic
circuit is explained in Figure 5.15b. Similarly to the NAND gate, all other logic gates can
be constructed using only NOR gates. The NOR consists of two serial PMOS transistors
and two parallel NMOS transistors.

R; R;
| — | —
L L

— Out — Out

(a) Electronic circuit (b) Electric analogy

Figure 5.15: NOR [44]

The NOR logical inputs are given in Table 5.2. The time domain is split into equally
long segments.

All0]1
BlloO|0O|1]1

Table 5.2: NOR — input

The abbreviated SPICE netlist of CMOS NOR follows (the full version of the source
code can be found in Appendix D.4).

Il |vdd 1 0 DC 3.3

2 |Ri 21 0.1

3 |* A =20, 1, 1, O

1 |V3 3 0 PWL(O O 5e-08 0 5e-08 3.3 1.5e-07 3.3 1.5e-07 0 2e-07 0)
5 | B =0, 0, 1, 1

6 |V4A 4 0 PWL(O 0 1e-07 0 1e-07 3.3 2e-07 3.3)

7 | * nor(A, B)

& |Mba 6 3 2 2 P3306M
9 |MBb 5 4 6 6 P3306M
10 | Mbc 5 3 0 0 N3306M
11 |Mbd 5 4 0 O N3306M
12 |Cbe 5 0 1p

The transformation of CMOS NOR is shown in Figure 5.16. Capacitors C3 and Cy are
parallel; therefore, one capacitor Csy = C3 + Cjy is used in equations.

56

iA

E,,,

. > Out

Ry Ry, - C3 Ry Ry - C4

Figure 5.16: NOR — substituted by CSM

The circuit in Figure 5.16 is described by equations (5.11)®; capacitor C34 (merged from
C3 and Cy) is precharged.

1
L= = (U—uc1 U, —u034>
1 . 1
u/C1 = Cl‘(Z_R'uCl)’ uc, (0) = 0
. J (5.11)
1 . Ra+Rp
e = gy (1R o) e = 33

The solution for the values from Table 5.2 is shown in Figure 5.17. The transient
responses begin at 50 ns and 150 ns. The circuit truly behaves like the NOR gate.

5Parameters are the same as for (5.10), capacity Cszs = C3 + Ch.

o7

Out ' ' Out

3t J

2.5 1
o b J

15 1
1) J

0.5 F 1
ok . ; ;

0 5 10 15 %108 [s] 0 5 10 15 %108 [s]
(a) CSM [V] (b) SPICE [V]

Figure 5.17: NOR - solution

The error of the approximation is shown in Figure 5.18. The approximation error during
the transient response now exceeds even 2 V; but as already stated, it is only a minor
problem.

Err

0 5 10 15 %108 [s]

Figure 5.18: NOR — approximation error [V]

5.4.4 XOR

XOR can be constructed using the basic CMOS logic gates described above (inverters,
NANDs and NORs). The XOR is used in adders. Equation (5.12) is in the Disjunctive
Normal Form (DNF).

rdy = (TAyY)V(xAT) (5.12)

Logic gates AND and OR are compound gates (additional inverters are required), but
if De Morgan’s laws are used, the expression in (5.13) is acquired that uses the simplest
logic gates which can be constructed in electronics. The Sheffer stroke (denoted as 1) [21]
is a logical operation equivalent to the negated conjunction operation, NAND.

r@oy = Tty T (x17) (5.13)

The abbreviated SPICE netlist of XOR follows (the full version can be found in Ap-
pendix D.6).

58

1 |vdd 1 0 DC 3.3
2 |Ri 21 0.1
3 |*x =20, 0, 1, 1
4 |V3 3 0 PWL(O O 2e-07 0 2e-07 3.3 4e-07 3.3)
5|y =o0,1, 0,1
6 |V4a 4 0 PWL(O 0 1e-07 0 1e-07 3.3 2e-07 3.3 2e-07 0 3e-07 0 3e-07 3.3 4e-07
7 |+ 3.3)
* not (x)

© ©

Mba 6 3 2 2 P3306M
10 |M5b 6 3 0 0O N3306M
11 |Rbc 5 6 0.1

12 | * nand(not(x), y)
13 |M7a 8 5 2 2 P3306M

14 |M7b 8 4 2 2 P3306M
15 |M7c 8 5 9 9 N3306M
16 |M7d 9 4 0 O N3306M
17 |R7e 7 8 0.1

18 | * not(y)

19 |M10a 11 4 2 2 P3306M
20 |M10b 11 4 O O N3306M
21 |R10c 10 11 0.1

22 |* nand(x, not(y))

23 |M12a 13 3 2 2 P3306M
24 |M12b 13 10 2 2 P3306M
25 | M12c 13 3 14 14 N3306M
26 |M12d 14 10 O O N3306M
27 |R12e 12 13 0.1

28 | * nand(nand(not(x), y), nand(x, not(y)))
29 |M1b5a 15 7 2 2 P3306M
30 |M15b 15 12 2 2 P3306M
: M15c 15 7 17 17 N3306M
M15d 17 12 0 O N3306M
Cl5e 15 0 1le-12

W W W
W N =

Table 5.3 summarizes the results near the end of each time segment. The last two
columns contain the output voltages of the circuit representing XOR solved by CSM and
SPICE, respectively.

t [1077 s] || x | y | Res | CSM [V] | SPICE [V]
0.99 00 0 0.000000 0.000000
1.99 0|1 1 3.299943 3.299999
2.99 110 1 3.299959 3.299999
3.99 111 0 0.001769 0.000000

Table 5.3: XOR

XOR with three inputs

To construct a full adder, three-input XORs are required. Although two XORs could be
used, it is rather useful to have XOR with three inputs®. Equation (5.14) describes the
three-input XOR — derived from the Conjunctive Normal Form (CNF).

r®y®dz = (tAYAZDA((YAN2)AT)A(zA2) AG)A(TAGAZ) (5.14)

Equation (5.15) is again obtained from (5.14) using De Morgan’s laws. The NOR
operator is known as Peirce’s arrow (denoted as |) [21]. Note that both 1 and | are

5The three-input XOR delay is shorter than the delay of two XORs and fewer basic logic gates are used.

99

assumed to be non-associative in our formal system — the parentheses delimit separate logic
gates; that is, a 3-input NOR is used to evaluate the last parenthesis and a 4-input NOR
is used to summarize the partial results.

r@y@z = (@1y) L2) L (W12l L(@t2) by b @iyl (515

Table 5.4 summarizes the results near the end of each time segment (eight segments in
total).

t[1077s] || x|y |z | Res | CSM [V] | SPICE [V]
1.49 01010 0 0.000030 0.000001
2.99 01011 1 3.199193 3.198240
4.49 0]1]0 1 3.297346 3.299999
5.99 01111 0 0.000276 0.000001
7.49 11010 1 3.203977 3.203666
8.99 1101 0 0.000276 0.000002

10.49 11110 0 0.000133 0.000019
11.99 1|11 1 3.201614 3.203512

Table 5.4: XOR with three inputs

The output values of CSM and SPICE correspond quite well. The behavior of a three-input
XOR is correctly analyzed.

60

Chapter 6

VLSI

Very Large-Scale Integration (VLSI) circuits typically comprise hundreds of thousands of
transistors on a chip. They can be assembled only from CMOS NANDs or NORs! as both
gates can form any logical operation. Therefore it is possible to simulate VLSI circuits
using the CSM described above. More about VLSI design can be found in [22].

6.1 CMOS latches

CMOS latches are electronic circuits constructed using the basic CMOS logic gates (typi-
cally inverted, which are constructed from fewer transistors than non-inverted). Latches
can store one bit of information (0 or 1) as long as they are power-supplied. Their values
can be changed by inputs (specific to every latch).

They are also called asynchronous flip-flops, since their function is not dependent on the
clock signal. Thanks to the asynchronous behavior, changes to the value of the latches are
immediate; however, it is not always an advantage — the problem occurs in the simulation
of the JK latch. For more, see [37].

6.1.1 RS latch

The RS latch is a fundamental latch, since all other latches and flip-flops are built on it.
It consists of two NORs, two inputs R and S and two outputs Q and @Q. Input S sets the
value to logical one and input R resets the value to zero. Output @ holds the value and
output @ is its complement. Figure 6.1 shows the scheme.

R Q

S Q

Figure 6.1: RS latch

! Although it is better to use both types of gates and an inverter.

61

Table 6.1 contains input values. First, the value is reset to zero and then the value is
set to logical one. All inputs acquire logical zero or one in the form of the corresponding
voltage values.

R|1]0|0]0
S|0]0]1]0

Table 6.1: RS latch — inputs

Figure 6.2 illustrates the behavior of the circuit. The length of the basic time segment is
determined by two logic-gate delays, i. e. 100 ns, since the latch requires changes to the value
of two gates. The value of the latch is preset to zero to avoid the initial transient response;
therefore, the initial reset only confirms the value. Transient responses can be observed
after each change of input values — there are two minor transient responses beginning at
100 ns and 300 ns, but they have no impact on the resulting behavior, since they are in
tolerance. The main transient response can be observed at 200 ns where switching of the
values occurs.

Q —— ; Q ——
3+ 1 -Q 3k 1 -Q
25 . 25 .
2+ . 2+ .
15 - . 15 .
1r . 1r .
05 - . 05 | .
0 | 0 ¢ : :
0 1 2 3 %107 [s] 0 1 2 3 %107 [s]
(a) CSM [V] (b) SPICE [V]

Figure 6.2: RS latch — solution

The approximation errors for both @ and @Q are shown in Figure 6.3.

2r ' ' ! 1 Erq ——
EIT_,Q
15 ‘
1F _
0.5 1
0k {’\ — -
0 1 2 3 ><10-7 [S]

Figure 6.3: RS latch — approximation error [V]

The transient response is responsible for the problem of inconsistent values: there is
a small time segment when values) and) are the same. This state is invalid and can

62

cause some side effects. The problem does not appear in flip-flops, since the value is
considered valid after the change (it is ensured by the clock).

The disadvantage of the RS latch is that both inputs cannot be logical one at the same
time; this is considered an invalid input, which would lead to an invalid state. Therefore,
it is solved in other latches and flip-flops using various approaches.

6.1.2 D latch

D latches are the cornerstones of D registers which are used in Booth’s algorithm analyzed
in Section 6.4. The problem of invalid inputs is solved by setting input R to the complement
of input S. However, another input, Wr, is necessary?; otherwise, the latch would not hold
the value (the input would propagate). The scheme is illustrated in Figure 6.4. CMOS
NORs were substituted by CMOS NANDs since the input value is inverted by the leftmost
NAND (the toggling value is now logical zero).

DDQ- 0
e O

Figure 6.4: D latch

<l

Input values are given in Table 6.2. Value D changes in time, but the value propagates
only when the latch is enabled by input Wr (even time segments).

D (0O]1]0|0]|1
Wrjjoj1]0]1

Table 6.2: D latch — inputs

Figure 6.5 shows the solution for the initial value equal to zero. Again, the transient
responses occur after input changes (note the transient responses after Wr changes to logical
7€ero).

Q ——
-Q

4 x107[s]

Figure 6.5: D latch — solution

2This version is referred to in the literature as gated.

63

The approximation error is shown in Figure 6.6.

T T T T
1.4 - . Elr’:(—),o
12 B

1r _
0.8 B
0.6 B
oat | |
0.2 (K B

N I N AN | SN AN

0 1 2 3 4 x1071(s]

Figure 6.6: D latch — approximation error [V]

6.1.3 JK latch

The JK latch is the basis of the master—slave JK flip-flop (as explained in Section 6.2.2)
that is used for the T flip-flop required by the implementation of Booth’s algorithm. The
JK latch eliminates the problem of invalid input combination by adjusting the function to
toggle the values when both inputs (of the RS latch) are logical ones. Otherwise, input J
corresponds to S and input K corresponds to R. The scheme of the latch is illustrated in

Figure 6.7.

’ Q

<l

;
D

Figure 6.7: JK latch

Table 6.3 contains the inputs. The first time segment is left empty. The latch is set
in the second time segment and reset in the third. The fourth time segment preserves the
value and toggling appears in the last segment.

JJoj1|00]|1
K|oj0oj1|0]1

Table 6.3: JK latch — inputs

The behavior of the latch is illustrated in Figure 6.8. All time segments except for the
last one show correct behavior. In the last time segment, a problem appears: when value
Q toggles to logical one, the second input NAND acquires zero value after a short transient
response while the value of the first input NAND remains zero; therefore, both values @
and @ converge to logical one.

64

T P T T — Q T T T O
3F 1 1 t 1 -Q 3r / < {r 1 -Q
. ‘ ‘ . 25 F .

g 15 F ‘ .
i 1L ‘ i

. 0.5 ‘ » .

i = 0 + } t 1 =
2 3 4 %107 [s] 0 1 2 3 4 %107 [s]

(a) CSM [V] (b) SPICE [V]

Figure 6.8: JK latch — solution

The approximation error is shown in Figure 6.9.

‘) Errg
1.2 | Errq

1| | | .
0.8 i

0.6

0.4

|
I
NS

3 4 x107[s]

0.2

o
[any
N

Figure 6.9: JK latch — approximation error [V]

To avoid the problem, precise timing is necessary; however, a much better solution, as
demonstrated below, is a synchronous master—slave JK flip-flop.

6.2 CMOS flip-flops

CMOS flip-flops are synchronized by the clock. The time period of the clock is four
logic-gate delays, T' = 200 ns, since changing the values of two logic gates is typically
required in the active time segment. For more, see [37].

6.2.1 D flip-flop

The D flip-flop is very similar to the D latch; the only difference is the clock input. The
circuit can change its state only if the clock is logical one. It is employed in the D shift
registers used by Booth’s algorithm for the multiplicand and the result. The scheme is
illustrated in Figure 6.10.

65

D _j@_ 0

Wr —e

Figure 6.10: D flip-flop

<l

Input values are given in Table 6.4. Input D is logical one in two time segments and
the circuit is enabled by input Wr in three time segments.

D ||]0Oj1]0]0]|1
Wr0|1(0]1]|1

Table 6.4: D flip-flop — inputs

The output changes synchronously; the behavior, which is illustrated in Figure 6.11, is
correct.

0 — —
3t -Q 3F (—V \
25 F 25 |
2+ 2k
15 15 b
1+ 1t
0.5 0.5 -
0 0 ;
0 8 x107[s] 0 2 4 6 8 x107[s]

Figure 6.11: D flip-flop — solution

The approximation errors of both @ and @ are shown in Figure 6.12.

12 (. T T T T .| Eer
Err.q

0.8 “
‘\
0.6 -

0.4 -

0 2 4 6 8 X 10-7 [s]

Figure 6.12: D flip-flop — approximation error [V]

66

6.2.2 JK flip-flop

Figure 6.13 shows a master—slave JK flip-flop, which eliminates the problem of the JK latch.
This approach ensures that the output of the master flip-flop changes first (on the positive
edge of the clock) while the slave flip-flop changes its state afterwards (on the negative
edge). The JK flip-flop is used in the form of the T flip-flop in the implementation of
Booth’s algorithm (analyzed in Section 6.4).

}
}

Figure 6.13: JK flip-flop

D
D,

B
CL; {}y
KT}C !

The input values are given in Table 6.5. The flip-flop is set in the first time segment,
reset in the second segment and toggled in the third and the fourth time segment. It holds
the value in the last segment.

J1]0]1[{1]0
Kf{oj1j1|1]0

Table 6.5: JK flip-flop — inputs

The behavior of the master—slave JK flip-flop is illustrated in Figure 6.14. It is obvious
from the graph that the timing problem has now been solved.

4 6 8 x107[s]

Figure 6.14: JK flip-flop — solution

67

The approximation error is shown in Figure 6.15.

o N T T L)
1.5 4
1F 4
0.5 4
(= l—tﬂ\ k \ﬁ“’\ k |
0 2 4 6 8 x107[s]

Figure 6.15: JK flip-flop — approximation error [V]

6.3 Adder

Addition is a basic arithmetic operation. It is a very suitable operation for the simulation
of VLSI circuits, as it is easily scalable.

6.3.1 Half adder

The half adder has only two inputs (summands). It can be used for the calculation of the
least significant bit (LSB) of multiple-bit adders without an input carry. The output and
the carry are calculated by (6.1).

output = Dy (6.1)

carry = z Ay = xty

6.3.2 Full adder

The full adder has three inputs — two summands and an input carry. The expressions in
(6.2) are used for calculating the output and the carry.

output = Dy D co
carry = (xAy)V(zAco)V (yAco) (6.2)
=@ty T(@tec)t ¥t

6.3.3 Transient response

The traditional ripple-carry adder has a disadvantage — it takes a long time to propagate the
carry to 1-bit adders representing more significant bits when calculating the sum. Assuming
a 16-bit adder and the inputs 1111111111111111; and 1, the carry of the least significant bit
propagates slowly through all 1-bit adders, resulting in the 16-bit adder carry. The result
overflows — denoted by square brackets, see (6.3).

1111111111111111, + 1 = [1]0000000000000000, (6.3)

68

The situation is shown in Figure 6.16. All bits of the 16-bit adder are set to zero after
the corresponding transient response.

0 5 10 15 20 25 x108 [s]

Figure 6.16: Carry propagation [V]

6.3.4 CLA adder

To avoid a significant delay of the adder (especially for multiple-bit numbers), a specific
circuit — Carry Look-ahead (CLA) — can be constructed [37]. It uses values g; (generate)
and p; (propagate), calculated by (6.4).

gi = a; \b; (6.4)
pi = a; Vb .

Particular carries can be calculated using (6.5).

c1 = goV (poAco
c2 = g1V (

3= gVipAc
cs = g3V (p3Acs

)
)
) (6.5)
)

After substituting carries ¢;, ¢ and c¢3, (6.6) is obtained.

c1 = goV (poAco)

c2 = g1V (p1Ago)V(p1ApoAco)

c3 = g2V (p2/Ag1)V(p2 Ap1Ago)V (p2 Ap1 ApoAco) (6.6)
ca = g3V (p3Ag2)V(p3sAp2Agr)V(psAp2 Ap1Ago)

V (p3 Ap2 Ap1 Apo A co)

The propagation delay of the CLA is 3 logic gates if AND and OR are used. In case of
NAND and NOR gates®, the propagation delay is 4 logic gates — ¢; and p; are calculated
using NAND and NOR gates and inverted; the propagation delay of ¢; remains 2 logic gates
as it is calculated by (6.7) — using De Morgan’s laws.

SNANDs and NORs are commonly used in electronic circuits (each gate consists of four transistors, see
Figure 5.10a and 5.15a).

69

c = (Po T co)

(p1 1 90) T (p1 T po T co)

cg =921 (2191) T (21Tp11T90) 1 (P21 p1Tpot o) (6.7)
cs = g3 (p3192) T(psTp2Tg1) T (3T p2Tr1? g0)

T (p3Tp2TpP1Tpo T o)

0

=) 8l

1
1

Cy =

To evaluate the carries more quickly, another type of electronic circuit is required —
Carry Look-ahead Unit (CLU). It combines the values in the same manner as CLA, but its
input values are calculated by (6.8).

G = g3V (p3Ng2)V(psApaAgi)V (ps Ap2 Ap1Ago)

(6.8)
P = p3Ap2 Ap1 Apo

Again, it can be transformed into the equivalent form with basic CMOS logic gates using
De Morgan’s laws.

G=3m1TMm3Tg2) T3 Tp2Tg1) T (3t o1 90)
P = p31Tp21Tp11po

(6.9)

The accelerating circuit takes the form of a tree with CLAs on the lowest level and CLUs
on the other levels.

Table 6.6 shows that the length of the transient response of a 64-bit adder is considerably
shorter. For more information, see [37].

t [1077 5] Result
0.0 11
0.2 11
0.4 11
0.6 1110
0.8 1110
1.0 110000
1.2 110000
1.4 111011100000
1.6 1110110011000000
1.8 11101000100000000000
2.0 1111111111111110111111111111111011111111111011000000000000000000
2.2 1111111111101100111111101110100011101110110000000000000000000000
2.4 1110111011000000111011001000000011101000100000000000000000000000
2.6 1100100000000000110000000000000010000000000000000000000000000000
2.8 1000
3.0 00

Table 6.6: CLA adder — transient response

70

6.3.5 Scale of integration

The size of an electronic circuit is determined by the scale of integration. It is classified
differently by various authors — according to [22], the main categories are:

— Small-Scale Integration (SSI) — less than 10 logic gates;

— Medium-Scale Integration (MSI) — 10 to 1000 logic gates;

Large-Scale Integration (LSI) — up to 10000 logic gates;
— Very Large-Scale Integration (VLSI) — more than 10000 logic gates.

Some authors [10] even define a fifth category: Ultra Large-Scale Integration (ULSI). How-
ever, ULSI is commonly included in VLSI by other authors.

6.3.6 Experiments

The experiments were performed on our research server?. All simulation times were chosen
carefully to attain a final steady state. The experiments were performed using SPICE® and
CSM; specialized software was developed for the VLSI simulation (see Section 5.3.2).

Table 6.7 summarizes the parameters for individual test cases. The multiple-bit adders
with CLU+CLA trees were used for simulation. The first column (denoted as hr) shows
the tree heights, the second one the number of bits, the next columns contain the number of
transistors, logic gates and ordinary differential equations respectively and the last columns
contain the delays in multiples of basic logic-gate delays (these determine the simulation
times) and the scale of the integration. The number of bits used is proportional to the tree
height. The even rows contain the parameters of adders with half CLAs, as not all carries
are required.

ht | # bits | # transistors | # gates | # ODE | Delay SI

2 16 1272 286 922 11 MSI
3 32 2568 581 1865 15 MSI
3 64 5176 1166 3754 15 LSI
4 128 10376 2341 7529 19 LSI
4 256 20792 4686 15082 19 LSI
5 512 41608 9381 30185 23 LSI
5 1024 83256 18766 60394 23 VLSI
6 2048 166536 37541 120809 27 VLSI
6 4096 333112 75086 241642 27 VLSI
7 8192 666248 150181 483305 31 VLSI
7 16384 1332536 300366 966634 31 VLSI

The interesting thing is that the number of ordinary differential equations is smaller than

Table 6.7: CLA adder — parameters

the number of transistors. This is caused by merging parallel capacitors.

42x Intel Xeon E5-2630v2 (2.6 GHz, 6/12-core, 15 MB cache), 32 GB RAM
SNGSpice v26.1 with default settings

71

The results of the serial simulation of CLA adders are shown in Table 6.8 (the SPICE
simulations running longer than a day® were terminated before the end — it is irrelevant
how long they run). The results show the memory usage (denoted as MEM) and the time
consumption (Time) depending on the number of bits (# bits).

CSM SPICE
bits | MEM [MB] | Time [s] | MEM [MB] | Time [s]
16 0.30 0.39 5.51 0.90
32 0.55 0.97 10.73 3.62
64 1.33 1.95 20.52 11.65
128 2.37 4.77 39.85 45.55
256 4.95 9.61 79.27 292.32
512 9.84 22.26 159.46 1427.53
1024 19.45 49.97 - | > 86400
2048 38.96 127.99 - | > 86400
4096 77.99 271.23 - | > 86400
8192 155.99 630.67 - | > 86400
16384 312.03 1316.48 - | > 86400

Table 6.8: Serial simulation

The results of the parallel simulation are shown in Table 6.9. SPICE is omitted as
the chosen implementation does not support parallel computation. The results show that
the memory consumption remains almost the same as in the serial simulation. The time
consumption is considerably lower. The decrease in the acceleration ratio for 4096 bits and
more is probably caused by small caches.

bits | MEM [MB] | Time [s| | Acceleration
16 0.30 0.19 2.0526

32 0.82 0.35 2.7714
64 1.34 0.49 3.9796
128 2.63 1.05 4.5429
256 5.20 1.58 6.0823
512 10.09 3.16 7.0443
1024 19.89 .84 8.5565
2048 39.23 14.50 8.8269
4096 78.40 33.36 8.1304
8192 157.30 85.95 7.3376
16384 313.01 217.61 6.0497

Table 6.9: Parallel simulation

Table 6.10 shows the acceleration of the serial and parallel computations achieved by
CSM compared to SPICE.

61 day = 86400 s

72

bits Serial Parallel
16 2.3077 4.7368

32 3.7320 10.3429

64 5.9744 23.7755

128 9.5493 43.3810
256 30.4183 185.0127
512 64.1298 451.7500
1024 | > 1729.0374 | > 14794.5205

Table 6.10: Acceleration of CSM compared to SPICE

The results achieved show that the simulation by CSM is much faster than SPICE for
larger circuits. It takes more than a day to simulate them using SPICE.

6.4 Multiplier

Besides addition, multiplication is another important arithmetic operation. To calculate
any MTSM term of any ODE in the autonomous form (transformed by the automatic
transformation), only addition and multiplication are necessary.

6.4.1 Booth’s algorithm

Booth’s algorithm is fast and uses only the operations addition and bit shift. The principle
is discussed in [15].

D shift register

The multiplier stores numbers in D shift registers [20]. These registers consist of D flip-flops;
a master—slave D flip-flop is used for our purposes since it performs shifting in a safe manner
(single D flip-flop requires very careful timing [35]). The function of an n-bit D shift register
is described by (6.10).

Si = x; T Ent Wr
R, =S5 1TEntTWr

D; = RES 1 qi41 1t Sht CLK

Qi = SiTD;itQ; (6.10)
Q; = RESTR;1Q;* (D; 1 Sh 1 CLK) '
4 = RES1Q; 1 ShtCLK

G = Si1di 1Ty

g = RESTR; 1¢; 1 (dit Sh1t CLK)

The register can be asynchronously filled with number z if enabled by signals En and Wr
(parallel input). The register can be asynchronously reset by signal RES. D; is a negated

73

input of the master RS latch and Q; and Q; are the master state values. The variables of
the slave RS latch are denoted by the lower case.

The register can be shifted by signal Sh, with the shift being performed in two steps:
first, the master RS latch loads the value from a higher bit” and then the slave RS latch
loads the value of the master RS latch in the negative half of the clock — this avoids double
shift.

Two’s complement

Two’s complement is used for the subtraction of the multiplier. Commonly, it is performed
by an inversion and an addition of one [37]. A better approach is to start from the least
significant bit (LSB), leaving all zeros intact up to the first one — other bits are inverted.?

The latter algorithm suffers from the same problem as the adder — slow carry propa-
gation. As in the case of the adder, a propagation circuit can be constructed — the Invert
Look-ahead (ILA). In this case, the carry remains one from the first non-zero carry — the
carries are calculated by (6.11).

c1 = ¢V
cg = Vo
2o ae (6.11)
c3 = Cca VT2
cy = c3Vxs
After substituting ¢;, (6.12) is derived.
c1 = ¢V
co = cVaroVzx
2 oV TV T (6.12)
cs = cgVargVaVa
¢4 = cgVrgVaiVaVars
By transforming (6.12) to use only basic CMOS gates, (6.13) is obtained.
c1 = ¢od xo
co = codxodm
(6.13)

c3 = cod ol we

ca = codzodrlawalms

As in the case of the adder, another type of accelerating circuit is required — the Invert
Look-ahead Unit (ILU). It combines the input values in the same way as ILA, but the input
values of this circuit are calculated by

G = 21VaxaVae3Vay (6.14)

or by (6.15) using the basic logic gates.

G = Tl \L) i T3 J/ T4 (6.15)

Then an accelerating tree is established: the lowest level consists of ILAs and the other
levels of ILUs (grouping four units from the nearest lower level).

"That is gi+1 for all bits save the most significant bit (MSB). MSB uses its own value g;.
8The idea uses the fact that all zeros are inverted into ones and when one is added they become zeros
again and the zero which arose from the first one is changed into the overflowed one.

74

T flip-flop

The result and an operand of the adder used to add or subtract the multiplier are kept in
a pair of n-bit registers and after every required addition (some segments do not require
an addition) the functions of the registers are toggled to avoid copying the result. The
master—slave T flip-flop serves this purpose. It is derived from the master—slave JK flip-flop
where both inputs are either zero or one. The function is described by (6.16).

Q=Q7" (REStTT1q1tCLK 1 En)

Q = RES1 Q1 (I't qt CLK 1 En)

(6.16)
71 (RES 1 Q1 CLK)
7= RES1q1 (Q 1 CLE)

<
Il

Multiplexer

A two-input n-bit multiplexer (i.e. the multiplexer with control bit ¢ selecting from two
n-bit inputs) is used for selecting the appropriate register containing the result of the
multiplication; another multiplexer is used for the selection of the second adder input. The
function of the multiplexer is described by (6.17).

ri = (@ta) 1 (et y) (6.17)

6.4.2 Multiplier components

The components used for the multiplier construction are:
— an (n + 1)-bit D shift register for the multiplicand;
— an n-bit D register containing the multiplier;
— an n-bit accelerated complementing (two’s complement) circuit;
— an n-bit D register containing the complemented multiplier;
— two n-bit D shift registers for the result (toggled to avoid copying);
— a one-bit T flip-flop for the decision which result register is used;
— a one-bit delaying D register to store the decision which result register is used;

— a two-input n-bit multiplexer selecting the right result register (also the first adder
input);

— an XOR deciding whether to switch between the result registers (based on two LSBs
of the multiplicand);

— a two-input n-bit multiplexer for the selection of the second adder input (the multiplier
or the complemented multiplier);

— an n-bit CLA adder.

75

6.4.3 Verification

First, the correct operation of the multiplier was verified. The multiplication (6.18) was

performed (the numbers were generated randomly).
—0.1001101000010111101110101100100, - 0.1101111111000001000000100001011; (6.18)

—0.1001101000010111101110101100100, is 101100101111010000100010100111004 in two’s

complement. The partial results of the algorithm are shown in Table 6.11.

Extended multiplicand

Result

INIT

00000000000000000000000000000000

101100101111010000100010100111000

00000000000000000000000000000000

110110010111101000010001010011100

00000000000000000000000000000000

111011001011110100001000101001110

11001000000011111011111101111010

111101100101111010000100010100111

11100100000001111101111110111101

111110110010111101000010001010011

11110010000000111110111111011110

111111011001011110100001000101001

00110000111100100011100001110100

111111101100101111010000100010100

00011000011110010001110000111010

111111110110010111101000010001010

11010100010011000100110110010111

111111111011001011110100001000101

00100010000101100110011101010001

= =
S elo|wo o] o]k w o —|3k

111111111101100101111010000100010

11011001000110101111001100100011

—_
[\

111111111110110010111101000010001

00100100011111011011101000010111

—_
w

111111111111011001011110100001000

00010010001111101101110100001011

—_
S

111111111111101100101111010000100

00001001000111110110111010000101

—
ot

111111111111110110010111101000010

11001100100111110111011010111101

—_
(=]

111111111111111011001011110100001

00011110001111111111101111100100

—
EN|

111111111111111101100101111010000

00001111000111111111110111110010

—_
oo

111111111111111110110010111101000

00000111100011111111111011111001

—
Nej

111111111111111111011001011110100

00000011110001111111111101111100

[\~
o

111111111111111111101100101111010

11001001111100111011111100111000

[\
—_

111111111111111111110110010111101

00011100111010100010000000100001

[\)
[\)

111111111111111111111011001011110

11010110100001001100111110001011

[\)
w

111111111111111111111101100101111

11101011010000100110011111000101

[\
g

111111111111111111111110110010111

11110101101000010011001111100010

[\V)
ot

111111111111111111111111011001011

11111010110100001001100111110001

\V)
(=]

111111111111111111111111101100101

00110101010110001000110101111110

[\
3

111111111111111111111111110110010

11100010101111000000011000111001

[\
co

111111111111111111111111111011001

00101001010011100100001110100010

[\
Nej

111111111111111111111111111101100

00010100101001110010000111010001

w
(a]

111111111111111111111111111110110

11010010011000110101000001100011

w
—_

1111111111111111111111111111711011

11101001001100011010100000110001

w
[\

1111111111111111111117111111111101

00101100100010010001010010011110

w
w

111111111111111111111111111111110

10111100101010001001001110010011

Table 6.11: Booth’s multiplier — partial results

The initialization is the first phase of the algorithm — the result registers, the T flip-flop
and the delaying one-bit register are zeroed; then, the input values are stored in appropriate

76

registers and the two’s complement of the multiplier is calculated and stored in the register.
The other phases (which are performed n-times) always consist of three subphases:

1. From two LSBs of the multiplicand, the type of operation is determined (00 and 11
mean no operation, 01 addition and 10 subtraction).

2. The multiplier (or its complement in the case of subtraction) is added to the result
and stored in the alternate result register. This phase takes longer than the others,
depending on the adder delay.

3. If the operation was to add or subtract, the alternate result register is chosen as the
multiplier result (and the adder input) by storing the value of the T flip-flop into the
delaying register. If this is not the last phase, the multiplicand and the result are
shifted one bit right.

The result of the calculation performed, which is given in the last line of Table 6.11, is the
two’s complement of

—(0.10000110101011101101100011011014
that corresponds with the correct result of (6.18).

6.4.4 Experiments

Table 6.12 summarizes the parameters for individual test cases. Fast adder and complement
circuits were used and the simulation time was chosen appropriately to solve the whole
multiplication process. The penultimate column (containing the multiplier delays in the
number of time segments) determines the simulation times. The last column contains the
scale of the integration [22].

bits | # transistors | # gates | # ODE | Delay SI
16 6190 1169 4264 51 LSI

32 12274 2324 8461 132 LSI

64 24456 4625 16853 260 LSI

128 48812 9236 33642 645 LSI
256 97538 18449 67218 | 1285 | VLSI

Table 6.12: Booth’s multiplier — parameters

The results of serial simulation are given in Table 6.13. The last three lines of the
SPICE results are incomplete since SPICE runs longer than a day”.

CSM SPICE
bits | MEM [MB] | Time [s] | MEM [MB] | Time [s]
16 1.34 59.02 24.54 179.74
32 2.88 284.97 55.27 1310.88
64 5.46 1141.98 - | > 86400
128 11.12 5424.41 - | > 86400
256 22.17 | 26051.81 - | > 86400

Table 6.13: Serial simulation

91 day = 86400 s

77

Table 6.14 summarizes the results of parallel simulation. Parallel simulation by SPICE
is not included since the chosen implementation does not support it. The last column of
the table contains the acceleration of parallel to serial simulation.

bits | MEM [MB] | Time [s] | Acceleration
16 1.59 15.48 3.8127

32 3.14 61.00 4.6716

64 5.71 178.37 6.4023

128 11.38 712.17 7.6167
256 22.47 2534.44 10.2791

Table 6.14: Parallel simulation

The comparison of CSM and SPICE is shown in Table 6.15. It is evident that CSM
runs much faster than SPICE and is capable of solving larger circuits with low memory
overhead.

bits Serial Parallel
16 3.0454 11.6111
32 4.6001 21.4898
64 | > 75.6581 | > 484.3864

Table 6.15: Acceleration of CSM compared to SPICE

6.5 Generic CMOS circuits

Generic CMOS circuits can be described using an adjacency matrix. The matrix is sparse
and can be automatically transformed into a system of ODEs describing the electronic
circuit using CSM. For example, the adjacency matrix and the vector of operations for
three-input XOR follow.

00 00O0OO0OO0OO0OO0OO 0O T
000O0O0OOO0OO0OTO0OTO0OO@O Y
000O0O0OO0OO0OO0OO0O 0O z
1'1000O0O0O0O0GO0OO)
001 100O0O0O0O0O0 1
A = 01 1000O0O0O0O0OO0 u = 0 (6.19)
1000 01O0O0O0O0OTGO 1
10100O0O0O0O0GO0OGO T
0100O0O0O0O1TO0TO0OOPO 1
111000000 O0O0 {
00001010110 3

The lines of matrix A correspond with the lines of vector u. To obtain the inputs for an
operation, matrix—vector multiplication is performed.

78

6.5.1 Generating ODEs

The algorithm for the construction of ODEs is straightforward: each non-zero line of the
adjacency matrix defines the inputs for the operation. For example, the penultimate line
describes a three-input'® NOR: z, v, z are the inputs; the equations are generated consecu-
tively and the current for three inputs is:

. 1
i =5 <U —UC, — UC, — UCy — uc456>, (6.20)

the three ODEs for the three inputs:

1 Cl Rz
ulc = i <i_1‘UC2>7 uc,(0) = 0 (6:21)
2 Co Ry
L/ 1
ulcg = C3'<Z_Z.UC’3)’ uc,; (0) = 0

and the ODE for the output:

1 <i_RZ-Ry+Rx-RZ+Ry-RZ

UIC456 T Cyse ' Ry Ry R, 'u0456> ; UCy(0) = 3.3. (6.22)

The construction of the equations corresponding to the other lines is analogical.

10The number of non-zero elements on the line defines the operation arity.

79

Chapter 7

Conclusion

In this thesis, T discussed the simulation of electric and electronic circuits. First, 1 de-
scribed several numerical methods used for solving systems of ordinary differential equa-
tions (ODEs), but I mainly focused on the Modern Taylor Series Method (MTSM), which
is very accurate, fast and flexible. The automatic transformation used by this method was
explained thoroughly (demonstrated on elementary functions) and the simplification to the
minimal form was introduced at the end of the second chapter.

Next, I showed the main characteristics of MTSM, pointing out the need for arbitrary
precision arithmetic, automatic order selection, problems connected with the appropriate
stopping rule choice and quicker computations than when using other methods. A compari-
son of calculation speed by MTSM and MATLAB [31] was undertaken in [42] using sets of
problems proposed in [14].

Various methods of solving electric circuits were discussed, comparing the symbolic
and numerical approach and showing possibilities for computation acceleration, including
a few methods of parallelization. These methods were demonstrated on the telegraph-line
problem as it is easily scalable.

The main part of the thesis dealt with solving electronic circuits. The Capacitor Sub-
stitution Method (CSM) was introduced and CMOS gates (inverter, NAND, NOR) were
simulated. Then more complex circuits were modeled using the CMOS gates: XOR, latches
(RS, D, JK), flip-flops (D, JK, T), an n-bit D shift register, a complementing circuit and
a two-input n-bit multiplexer. From the circuits previously created, large circuits were
constructed: a multiple-bit adder and a multiplier.

The proposed method can be easily parallelized since all logic gates are independent
while no switching occurs; therefore, I separated the equations representing the electronic
circuits, merging together approximately a thousand ODEs'. This approach appeared to be
the most efficient one. Moreover, the simulation can be distributed among more computers
on condition that the communication bus is reasonably fast. The acceleration of the parallel
approach compared to the sequential approach is quite considerable.

CSM was successfully used for the simulation of VLSI circuits: multiple-bit adders
(a combinational logic circuit) and multipliers (a sequential logic circuit) were simulated.
The simulation using CSM was compared to the state-of-the-art system (SPICE) and the
acceleration is quite impressive: CSM is capable of solving more than a million transistors
in less than 4 minutes, while SPICE is unable to solve it within 24 hours; therefore, SPICE

Tt would be inefficient to simulate each logic gate separately.

81

is unusable for this purpose. The results of the experiments are presented in Section 6.3.6
and Section 6.4.4.

7.1 Aims achieved
This thesis dealt with three research hypotheses:

— The equations describing an electronic circuit can be systematically created.
The detailed assembling of ODEs is presented in Chapter 5. The basic CMOS logic
gates are analyzed and modeled. The generic algorithm is introduced in Section 6.5.

— The transistors could be replaced by RC circuits.
Yes, the operation of the transistors can be approximated by RC circuits. This ap-
proximation can model the lengths of the transient responses. The Capacitor Substi-
tution Method (CSM) is described in Section 5.4.

— The proposed method should be efficient.
This hypothesis is clearly answered in Chapter 6. It can be seen from the results, that
the proposed CSM is much faster (much more than 1000x) and more memory-efficient
than the state-of-the-art SPICE.

7.2 Research contribution

During my doctoral studies, I developed programming equipment for solving systems of
ordinary differential equations [24] which is further being improved and also adapted for
educational purposes (it is used in the course High Performance Computations? at the
Faculty of Information Technology, Brno University of Technology).

I dealt with the simulation of electric and electronic circuits, which led to the proposal
of the Capacitor Substitution Method (CSM). I simulated various electronic circuits using
this method, starting with the basic CMOS gates (inverter, NAND, NOR, see Section 5.4)
and XOR (Section 5.4.4), further latches (Section 6.1) and flip-flops (Section 6.2) and finally
an adder (Section 6.3) and a multiplier (Section 6.4).

Further, I created specialized software for simulating VLSI, which was used for the
simulation of relatively large VLSI circuits by CSM. The comparison of my approach to
the state of the art is convincing: up to a 16kb adder with 1332536 transistors (300 366
logic gates) was successfully simulated in less than four minutes; SPICE was unable to
solve even small VLSI circuits — a 1kb adder with 83256 transistors (18766 logic gates) —
in a reasonable time. The experiments were performed in Section 6.3.6.

I also successfully used CSM for the simulation of sequential logic circuits represented
by a multiplier. First, I constructed the basic elements required for the construction of
the multiplier using Booth’s algorithm with the CMOS logic gates proposed in Section 5.4.
Then, I connected them together to form the whole multiplier. The created circuit is quite
complex and the process of its modeling can serve as an example for modeling larger and
more complex VLSI circuits such as microprocessors. The multiplier is thoroughly analyzed
in Section 6.4 and the results of the experiments are shown in Section 6.4.4.

*http://wuw.fit.vutbr.cz/study/courses/VNV/index.php.en

82

http://www.fit.vutbr.cz/study/courses/VNV/index.php.en

The main ideas of the thesis were published at the prestigious® IEEE International
Conference on High Performance Computing & Simulation (HPCS 2017)* and accepted by
the scientific community.

7.3 Future research

The thesis outlines the possibilities of VLSI circuits simulation. Relatively large circuits
can be simulated and future research can focus on modeling a basic Central Processing
Unit (CPU) with basic operations simulated. After modeling a basic CPU, a more complex
CPU model can be proposed. Such an extensive model consists of billions of transistors;
therefore, a supercomputer will have to be involved.

3http://portal.core.edu.au/conf-ranks/?search=hpcs&by=all&source=CORE2017

*Kocina, F.; Kunovsky, J.: Advanced VLSI Circuits Simulation. In Proceedings of the 15th International
Conference on High Performance Computing & Simulation. Institute of Electrical and Electronics Engineers.
2017.

83

http://portal.core.edu.au/conf-ranks/?search=hpcs&by=all&source=CORE2017

List of Publications

Prestigious conferences

2017

2016

2015

1

Kocina, F.; Kunovsky, J.: Advanced VLSI Circuits Simulation. In Proceedings of the
15th International Conference on High Performance Computing & Simulation.
Institute of Electrical and Electronics Engineers. 2017.

Kocina, F.; Necasova, G.; Veigend, P.; et al.: Parallel Solution of Higher Order
Differential Equations. In Proceedings of the 14th International Conference on High
Performance Computing & Simulation. Institute of Electrical and Electronics
Engineers. 2016. ISBN 978-1-5090-2088-1.

Valenta, V.; Necasova, G.; Kocina, F.; et al.: Adaptive Solution of the Wave
Equation. In Proceedings of the 5th International Conference on Simulation and

Modeling Methodologies, Technologies and Applications. Science and Technology
Press. 2015. ISBN 978-989-758-120-5.

Proceedings with relatively high ranking?

2016

Kocina, F.; Necasova, G.; Veigend, P.; et al.: Modelling VLSI Circuits Using Taylor
Series. In Proceedings of the 14th International Conference of Numerical Analysis
and Applied Mathematics. American Institute of Physics. 2016. ISSN 0094-243X.

Necasova, G.; Kocina, F.; Veigend, P.; et al.: Solving Wave Equation Using Finite
Differences and Taylor Series. In Proceedings of the 14th International Conference of
Numerical Analysis and Applied Mathematics. American Institute of Physics. 2016.
ISSN 0094-243X.

Veigend, P.; Necasova, G.; Kocina, F.; et al.: Real Time Simulation of Transport
Delay. In Proceedings of the 14th International Conference of Numerical Analysis
and Applied Mathematics. American Institute of Physics. 2016. ISSN 0094-243X.

Chaloupka, J.; Kocina, F.; Veigend, P.; et al.: Multiple Integral Computations. In
Proceedings of the 14th International Conference of Numerical Analysis and Applied
Mathematics. American Institute of Physics. 2016. ISSN 0094-243X.

"http://portal.core.edu.au/conf-ranks/, http://dblp.uni-trier.de/
2http://www.scimagojr.com/

85

http://portal.core.edu.au/conf-ranks/
http://dblp.uni-trier.de/
http://www.scimagojr.com/

2015

2014

2013

Kocina, F.; Satek, V.; Veigend, P.; et al.: New Trends in Taylor Series Based
Applications. In Proceedings of the 13th International Conference of Numerical

Analysis and Applied Mathematics. American Institute of Physics. 2015.
ISBN 978-0-7354-1392-4.

Veigend, P.; Kunovsky, J.; Kocina, F.; et al.: Electronic Representation of Wave
Equation. In Proceedings of the 13th International Conference of Numerical
Analysis and Applied Mathematics. American Institute of Physics. 2015.

ISBN 978-0-7354-1392-4.

Kocina, F.; Kunovsky, J.; Marek, M.; et al.: New Trends in Taylor Series Based
Computations. In Proceedings of the 12th International Conference of Numerical
Analysis and Applied Mathematics. American Institute of Physics. 2014.

ISBN 978-0-7354-1287-3.

Satek, V.; Kunovsky, J.; Kocina, F.; et al.: Taylor Series Based Computations and
MATLAB ODE Solvers Comparisons. In Proceedings of the 11th International
Conference of Numerical Analysis and Applied Mathematics. American Institute of
Physics. 2013. ISBN 978-0-7354-1184-5.

Publications in Web of Science? or Scopus*

2015

2013

Satek, V.; Kocina, F.; Kunovsky, J.; et al.: Taylor Series Based Solution of Linear
ODE Systems and MATLAB Solvers Comparison. In Proceedings of the 8th Vienna
International Conference on Mathematical Modelling. Elsevier Science Direct. 2015.
ISBN 978-3-901608-46-9.

Kunovsky, J.; Satek, V.; Kocina, F.; et al.: The Positive Properties of Modern
Taylor Series Method. In Proceedings of the 15th International Scientific Conference

on Informatics. Institute of Electrical and Electronics Engineers. 2015.
ISBN 978-1-4673-9867-1.

Kopriva, J.; Kunovsky, J.; Kocina, F.; et al.: Numerical integration in the RNS. In
Proceedings of the 12th International Scientific Conference on Informatics. Faculty
of Electrical Engineering and Informatics, Technical University of Kosice. 2013.
ISBN 978-80-8143-127-2.

Other publications

2015

Kocina, F.; Veigend, P.; Necasovd, G.; et al.: Parallel Computations of Differential
Equations. In Proceedings of the 10th Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science. Litera. 2015. ISBN 978-80-214-5254-1.

3http://apps.webofknowledge.com/
“http://www.scopus.com/

86

http://apps.webofknowledge.com/
http://www.scopus.com/

Bibliography

[10]

[11]

[12]

[13]
[14]

Baker, R. J.: CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons.
3rd edition. 2010. ISBN 978-0-470-88132-3.

Barrio, R.; Blesa, F.; Lara, M.: VSVO Formulation of the Taylor Method for the
Numerical Solution of ODEs. Computers and Mathematics with Applications. 2005.
ISSN 0898-1221.

Barton, D.: On Taylor Series and Stiff Equations. ACM Transactions on
Mathematical Software. 1980. ISSN 0098-3500.

Bartsch, H. J.: Handbook of Mathematical Formulas. Academic Press. 1974.
ISBN 978-0-12-080050-6.

Burden, R. L.; Faires, J. D.: Numerical Analysis. Cengage Learning. 9th edition.
2010. ISBN 978-0-538-73351-9.

Butcher, J. C.: Coefficients for the Study of Runge-Kutta Integration Processes.
Journal of the Australian Mathematical Society. 1963. ISSN 1446-7887.

Butcher, J. C.: Implicit Runge-Kutta Processes. Mathematics of Computation. 1964.
ISSN 0025-5718.

Butcher, J. C.: Numerical Methods for Ordinary Differential Equations. John Wiley
& Somns. 3rd edition. 2016. ISBN 978-1-119-12150-3.

Calhoun, B. H.: Design Principles for Digital CMOS Integrated Circuits. National
Technology & Science Press. 2012. ISBN 978-1-934891-14-8.

Chang, C. Y.; Sze, S. M.: ULSI Technology. McGraw—Hill. 1996.
ISBN 978-0-07-114105-5.

Collins, P. J.: Differential and Integral Equations. Oxford University Press. 2006.
ISBN 978-0-19-853382-5.

Corliss, G.; Kirlinger, G.: On Implicit Taylor Series Methods for Stiff ODEs. In
Computer Arithmetic and Enclosure Methods. 1991. ISBN 978-0-444-89834-0.

Engelhardt, M.: SPICE Differentiation. LT Journal of Analog Innovation. 2015.

Enright, W. H.; Pryce, J. D.: Two FORTRAN Packages For Assessing Initial Value
Methods. ACM Transactions on Mathematical Software. 1987. ISSN 0098-3500.

Flynn, M. J.; Oberman, S. F.: Advanced Computer Arithmetic Design. John Wiley &
Sons. 2001. ISBN 978-0-471-41209-0.

87

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

Griffiths, D. F.; Higham, D. J.: Numerical Methods for Ordinary Differential
Equations. Springer. 2010. ISBN 978-0-85729-147-9.

Hairer, E.; Ngrsett, S. P.; Wanner, G.: Solving Ordinary Differential Equations I:
Nonstiff Problems. Springer. 2nd edition. 1993. ISBN 978-3-540-56670-0.

Hairer, E.; Wanner, G.: Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems. Springer. 2nd edition. 1996. ISBN 978-3-540-60452-5.

Hanrot, G.; Lefevre, V.; Pélissier, P.; et al.:. The GNU MPFR Library.
Retrieved from: http://www.mpfr.org/

Hwang, E. O.: Digital Logic and Microprocessor Design with VHDL. Thomson. 2006.
ISBN 978-0-534-46593-3.

Kaeslin, H.: Digital Integrated Circuit Design: From VLSI Architectures to CMOS
Fabrication. Cambridge University Press. 2008. ISBN 978-0-521-88267-5.

Kishore, K. L.; Prabhakar, V. S. V.: VLSI Design. 1. K. International Publishing
House. 2010. ISBN 978-93-80026-67-1.

Koch, O.; Kofler, P.; Weinmiiller, E. B.: The Implicit Euler Method for the
Numerical Solution of Singular Initial Value Problems. Applied Numerical
Mathematics. 2000. ISSN 0168-9274.

Kocina, F.: FOS: Fast ODE Solver. Software.
Retrieved from: http://www.fit.vutbr.cz/~ikocina/prods.php

Korn, G. A.; Korn, T. M.: FElectronic Analog and Hybrid Computers. McGraw—Hill.
2nd edition. 1972. ISBN 978-0-07-035363-3.

Kunovsky, J.: Modern Taylor Series Method. Habilitation work. Faculty of Electrical
Engineering and Computer Science, Brno University of Technology. 1994.

Kunovsky, J.; Pindry¢, M.; Satek, V.; et al.: Stiff Systems in Theory and Practice. In
Proceedings of the 6th EUROSIM Congress on Modelling and Simulation. 2007.
ISBN 978-3-901608-32-2.

Kunovsky, J.; Satek, V.; Vopénka, V.; et al.: Stiffness in Technical Initial Problems.
In Proceedings of the 10th International Conference of Numerical Analysis and
Applied Mathematics. 2012. ISBN 978-0-7354-1091-6.

Larsson, E.: Introduction to Advanced System-on-Chip Test Design and
Optimization. Springer. 2005. ISBN 978-1-4020-3207-3.

Lazar, J.: Electronics in Physical Experiment. February 2008.
Retrieved from: http://www.isibrno.cz/~joe/elektronika/elektronika_3.pdf

MathWorks: The Language of Technical Computing.
Retrieved from: http://www.mathworks.com/products/matlab

Moore, G. E.: Cramming More Components onto Integrated Circuits. In Proceedings
of the IEEFE. 1998. ISSN 0018-9219.

88

http://www.mpfr.org/
http://www.fit.vutbr.cz/~ikocina/prods.php
http://www.isibrno.cz/~joe/elektronika/elektronika_3.pdf
http://www.mathworks.com/products/matlab

[33] Nedialkov, S. N.; Pryce, J. D.: Solving Differential Algebraic Equations by Taylor
Series II1. Journal of Numerical Analysis, Industrial and Applied Mathematics. 2008.
ISSN 1790-8140.

[34] Paul, C. R.: Introduction to Electromagnetic Compatibility. John Wiley & Sons. 2nd
edition. 2006. ISBN 978-0-471-75500-5.

[35] Pedroni, V. A.: Digital Electronics and Design with VHDL. Elsevier. 2008.
ISBN 978-0-12-374270-4.

[36] Rabové, Z.; Zendulka, J.; Ceska, M.; et al.: Modeling and Simulation. Brno
University of Technology. 1992. ISBN 80-214-0480-9.

[37] Rafiquzzaman, M.: Fundamentals of Digital Logic and Microcomputer Design. John
Wiley & Sons. 5th edition. 2005. ISBN 978-0-471-73349-2.

[38] Ralston, A.; Rabinowitz, P.: A First Course in Numerical Analysis. McGraw—Hill.
1978. ISBN 978-0-07-051158-3.

[39] Sabah, N. H.: Electric Circuits and Signals. CRC Press. 2007.
ISBN 978-1-4200-4592-5.

[40] Satek, V.: Stiff Systems Analysis. PhD thesis. Faculty of Information Technology,
Brno University of Technology. 2012.

[41] Sétek, V.; Kocina, F.; Kunovsky, J.; et al.: Taylor Series Based Solution of Linear
ODE Systems and MATLAB Solvers Comparison. In Proceedings of the 8th Vienna
International Conference on Mathematical Modelling. 2015. ISBN 978-3-901608-46-9.

[42] Satek, V.; Kunovsky, J.; Kocina, F.; et al.: Taylor Series Based Computations and
MATLAB ODE Solvers Comparisons. In Proceedings of the 11th International
Conference of Numerical Analysis and Applied Mathematics. 2013.

ISBN 978-0-7354-1184-5.

[43] Veigend, P.; Kunovsky, J.; Kocina, F.; et al.: Electronic Representation of Wave
Equation. In Proceedings of the 13th International Conference of Numerical Analysis
and Applied Mathematics. 2015. ISBN 978-0-7354-1392-4.

[44] Wakerly, J. F.: Digital Design: Principles and Practices. Pearson Education. 4th
edition. 2006. ISBN 978-0-13-186389-7.

[45] Xiu, L.: VLSI Circuit Design Methodology Demystified: A Conceptual Taxonomy.
John Wiley & Sons. 2007. ISBN 978-0-470-19910-7.

89

Appendices

List of Appendices

A Practical usage
Al Circletest e
A2 Stiffsystemo
A.3 Mechanical oscillator
A.4 Definite integral L
A.5 Fourier coefficients

B Electric circuits
B.1 Algebraic operations
B.2 Parasitic capacity Lo
B.3 Compensating capacity
B.4 Telegraph line L

C Electronic circuits
C.1 Diode e
C.2 Inverter e
C.3 NAND . . .
C.4 NAND with threeinputs,
C.5 NOR . . . e
C.6 NOR with threeinputs.
C.7 XOR . . o
C.8 XOR with threeinputs

D Electronic circuits (SPICE)
D.1 Inverter e
D.2 NAND
D.3 NAND with three inputs
D4 NOR . . . o
D.5 NOR with threeinputs
D.6 XOR
D.7 XOR with three inputs

E Latches and flip-flops
E.1 RSlatch e
E2 Dlatch e
E3 JKlatch
E4 Dflip-flop e e
Eb5 JKAflip-flop
E6 THflipflop e

F Latches and flip-flops (SPICE)
F.1 RSlatch
F.2 Dlatch
F.3 JKlatch
F.4 Dflipflop
F.5 JKAflip-flop

95
95
95
96
96
96

99
99
99
100
100

103
103
103
104
105
105
106
107
108

111
111
111
112
112
112
113
114

117
117
118
119
120
121
123

F.6 T flip-flop

G VLSI
G.1 Half adder
G.2 Full adder

H VLSI (SPICE)
H.1 Half adder
H.2 Full adder

94

Appendix A

Practical usage

A.1 Circle test

1 | setup {

2 dt = 0.05;

3 method = Euler;
4 tmax = 8xpi+dt/3;
5 lim = 2;

6 |}

7

8 |graph {

9 colors = blue;
10 domain = y;

11 format = pdf;
12 height = 480;
13 legend = off;
14 square = on;

15 width = 480;
16 xmax = lim;

17 xmin = -1lim;

18 ymax = lim;
19 ymin = -1lim;
20 |}
21
22 |y’ = z &0;
23 |z’ = -y &1;

A.2 Stiff system

I | setup {

2 digits = 30;

3 dt = tmax;

! eps = l1le-32;

5 graphs = off;

6 method = MTSM;
7 prec = 32768;

8 tmax = b;

9 a = 1e1234;

10 |}

11

12 |y’ = z &1;

13 |z? = -—a*xy-(a+l)*z &-1;

95

A.3 Mechanical oscillator

I | setup {

2 dt = tmax/1000;
3 tmax = 5;

1 a = 31.4;

5 k= 1;

6 pos = 0;

7 v0 = 15;

8 |}

9

10 | graph {
11 format = pdf;
12 lpos = inside;
13 name = yz;

14 show =y, z;
15 |}

16

17 | graph {
18 colors = blue;
19 domain = y;
20 format = pdf;
21 lpos = inside;
22 name = pol;
23 show = z;
24 xmax = 8.2;
25 xmin = O0;
26|}
27
28 |y’ = z &pos;
29 |z’ = -k*z-a*u &vO0;
30 |u’ = vz &sin(pos);
31 |v’ = -uxz &cos(pos);

A.4 Definite integral

1 | setup {

2 dt = tmax/250;
31}

4

5 | graph {

6 colors = blue;
7 format = pdf;
8 legend = off;
9 show = y;

10 |¥

11

12 |y’ = sin(1ln(t+1))*1In(t+1)*(t-1)*x(t-1)/(t+1) &O0;

A.5 Fourier coefficients

1 | setup {

2 dt = tmax/1000;
3 tmax = 2%pi;
41}

5

6 | graph {

7 colors = #F00, #O0FO0, #O0O0F, #FOF, #OFF, #CCO,
8 #808 ;

9 format = pdf;

10 labels "%e_%hd";

96

#000,

#F80,

#888,

#088,

11 show = a?, b7;

12 |}

13

14 |f = 16*xsin(t) "5+4*cos(t)"3-sin(t) " 2+cos(t) " 2+2*xsin(t)*cos(t)-sin(5*t)
15 + 5*xsin(3*t)-cos(3*t)-cos(2*t)-sin(2*t)-10*sin(t) ;
16

17 a0’ = 2/tmax*xf &0;

18 a1’ = 2/tmaxxf*cos(t) &0;

19 |a2’ = 2/tmax*xf*xcos (2*xt) &0;

20 | a3’ = 2/tmax*f*xcos (3%t) &O0;

21 a4’ = 2/tmax*fxcos (4*xt) &O0;

22 |ab’ = 2/tmax*xfxcos(5*xt) &0;

23

24 b1’ = 2/tmax*xfxsin(t) &0;

25 | b2’ = 2/tmax*f*sin(2*t) &0;

26 | b3’ = 2/tmax*fxsin (3*t) &O0;

27 | b4’ = 2/tmax*fxsin(4*xt) &0;

28 | b5’ = 2/tmax*fxsin(5%t) &O0;

97

Appendix B

Electric circuits

B.1 Algebraic operations

1 | setup {

2 dt = tmax/250;

3 tmax = 1000;

1 U = 10;

5 R = 80;

6 R1 = 10;

7 R2 = 40;

8 Cl1 = 1;

9 c2 = 2;
10 |}

11
12 | graph {

13 format = pdf;

14 labels = "u_{C_%d}";
15 show = uC1, uC2;

16 xfmt = "%2.0t";

17 xmult = "10°2";

18 xmultx = 1.035;
19 xmulty = -0.065;
20 xtics = 0, tmax/5, 4*xtmax/5;
21 |}
22
23 |uC1’ = 1/C1*il &0;
24 |uC2’ = 1/C2*i2 &O0;
25 i1 = 1/R1*(uA-uCl);
26 |i2 = 1/R2*(uA-uC2);
27 |uA = (UxR1*R2+uCl*R*R2+uC2*R*R1)/(R*R1+R*R2+R1%*R2) ;

B.2 Parasitic capacity

1 | setup {

2 dt = tmax/250;
3 tmax = 100;
4 U = 10;
51// om = 0.2;
6 R = 80;

7 R1 = 10;

8 R2 = 40;

9 Cl = 1;

10 c2 = 2;

11 Cp = 0.1;

12 |// Cp = 0.01;
13 1}

99

14

15 | graph {

16 format = pdf;

17 labels = "u_{C_pl}", "u_A";
18 show = uCp, uld;

19 |}

20

21 | //u = Uxsin(om*t);

22 |uC1l’ = 1/C1x*il &O0;

23 |uC2’ = 1/C2%i2 &0;

24 |uCp’ = 1/Cp*(i-il1-i2) &0;

25 |1 = 1/R*x(/*u*/U-uCp);

26 il = 1/R1*(uCp-uCl);

27 |i2 = 1/R2*(uCp-uC2);

28 |uA = (UxR1*R2+uC1*R*R2+uC2*R*R1)/(R*R1+R*R2+R1*R2);

B.3 Compensating capacity

1 | setup {

2 dt = tmax/250;

3 tmax = le-4;

A U = 10;

5 R = 80;

6 Ri = le-2;

7 R1 = 10;

8 R2 = 40;

9 Cl = 1;

10 c2 = 2;

11 Cp = 0.01;

12 Ck = 1le-3;
13 1%

14
15 | graph {

16 format = pdf;
17 labels = "u_{C_p}", "u_A";
18 show = uCp, ul;

19 xfmt = "%2.0t";
20 xmult = "10°{-5}";
21 xmulty = -0.065;
22 xtics = 0, 2e-5, 9e-5;
23 |}
24
25 |uCl’ = 1/C1*il &O0;
26 |uC2’ = 1/C2%i2 &0;
27 |uCp’ = 1/Cpx(i-i1-i2) &0;
28 |uCk’ = 1/Ck*(i-1/R*uCk) &O0;
29 |1 = 1/Ri*(U-uCp-uCk);
30 |i1l = 1/R1*(uCp-uCl);
31 |12 = 1/R2*(uCp-uC2);
32 |uA = (U*R1%R2+uCl1*R*R2+uC2*R*R1)/(R*R1+R*R2+R1%*R2) ;

B.4 Telegraph line

I | setup {

2 dt = tmax/1000;
3 tmax = 1.8e-8;
A om = 2e9;

5 L = 1e-8;

6 C = 1le-12;

7 \1// R1 = 1;

8 R1 = 100;

9 1// R1 = 300;

100

10 R2 = 100;

11 |// R2 = 1el12;

12 |}

13

14 | graph {

15 colors blue;

16 format = pdf;

17 height = 640;

18 labels = "u_1";

19 show = ucl;

20 square = true;

2 width = 640;

22 xbase = 1000;

23 xfmt = "%2.01";

24 xmult = "10°{-9}";
25 xtics = 0, tmax/6, 5*tmax/6;
26 |}

27

28 | graph {

29 colors blue;

30 format = pdf;

31 height = 640;

32 labels = "u_2";

33 show = u2;

34 square = true;

35 width 640 ;

36 xbase = 1000;

37 xfmt = "%2.01";

38 xmult = "10°{-9}";
39 xtics = 0, tmax/6, 5%tmax/6;
40 |}

41

42 |u = sin(om*t) /xif t<pi/om*/;
43 |i = 1/Ri1*(u-ucl);

44 |ucl’ = 1/C*(i-i1) &O0;

45 111> = 1/L*(ucl-uc2) &O0;
46 |uc2’ = 1/C*(i1-i2) &O0;

47 |i2° = 1/L*(uc2-uc3) &0;
48 |uc3d’ = 1/C*(i2-i3) &O0;

49 | i3’ = 1/L*(uc3-uc4) &0;
50 |uc4’ = 1/C*(i3-i4) &O0;

51 |i4’ = 1/Lx(uc4-uch5) &0;
52 |ucb’ = 1/C*(id4-i5) &O0;

53 |i6’ = 1/L*(ucb5-uc6) &0;
54 |uc6’ = 1/C*x(i5-i6) &O0;

55 |i6’ = 1/L*(uc6-uc7) &O0;
56 |uc7’ = 1/C*(i6-i7) &O0;

57 1i7’ = 1/L*(uc7-uc8) &O0;
58 |uc8’ = 1/C*(i7-i8) &O0;

59 |i8’ = 1/L*(uc8-uc9) &0;
60 |uc9’ = 1/C*(i8-i9) &O0;

61 [i9’ = 1/L*(uc9-ucl10) &O0;
62 |ucl1l0’ = 1/C*x(i9-110) &O0;
63 |110’ = 1/Lx*(ucl0-ucll) &0;
64 |ucl1l’ = 1/C*x(i10-i11) &O0;
65 |i11’ = 1/L*(ucll-ucl2) &0;
66 |ucl2’ = 1/C*x(i11-i12) &0;

67 |i12’ = 1/L*(uc12-uc13) &0;

68 |uc13’ = 1/C*(i12-i13) &0;
69 |i13’ = 1/L*(uc13-uci14) &0;
70 |uc14’ = 1/C*(i13-i14) &0;
71 |i14’ = 1/L*(ucl4-uci1b5) &0;
72 |uclb’ = 1/C*(i14-i15) &0;
73 1115’ = 1/L*(ucl15-ucl16) &O0;
74 |ucl6’ = 1/C*x(i15-i16) &O0;
75 |i16’ = 1/L*(ucl16-ucl7) &O0;
76 |ucl7’ = 1/C*x(i16-i17) &O0;
77 | 117’ = 1/L*(ucl7-ucl8) &0;

101

78
79
80
81
82
83

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

ucl8’
i18’
ucl9’
i19°
uc20’
i20°
uc21’
i21°
uc22’
i22°
uc23’
i23”
uc24’
i24”°
uc25’
i25”
uc26’
i26°
uc27’
i27°
uc28’
i28°
uc29’
i29°
uc30’
i30°
uc31’
i31’
uc32’
i32’
uc33’
i33’
uc34’
i34’
uc35b’
i35’
uc36’
i36°
uc37’
i37’
uc38’
i38”’
uc39’
i39”’
uc40’
i40”’
ucé41’
i41”’
uc4?2’
i42°
ucé43’
i43°
uc44’
i44°
uc45b’
i45°
uc46’
i46’
ucé4r7’
i47”’
uc48’
i48”’
uc49’
i49”’
ucb50’
i50°
u2 =

= 1/Cx(i17-i18) &O0;
1/L*(ucl8-ucl19) &0;
= 1/Cx(i18-i19) &O0;
1/L*(ucl19-uc20) &0;
= 1/C*x(i19-i20) &O0;
1/L*(uc20-uc21) &O0;
= 1/C*(i20-i21) &0;
1/L*(uc21-uc22) &0;
= 1/C*x(i21-1i22) &0;
1/L*(uc22-uc23) &0;
= 1/C*x(i22-123) &0;
1/L*(uc23-uc24) &0;
= 1/Cx(i23-1i24) &O0;
1/L*(uc24-uc25) &0;
= 1/Cx(i24-i25) &O0;
1/L*(uc25-uc26) &0;
= 1/Cx(i25-i26) &0;
= 1/L*(uc26-uc27) &0;
= 1/C*(i26-127) &O0;
1/L*(uc27-uc28) &0;
= 1/Cx(i27-128) &0;
1/L*(uc28-uc29) &0;
= 1/C*x(i28-129) &O0;
1/L*(uc29-uc30) &0;
= 1/C*x(i29-130) &0;
1/L*(uc30-uc31) &0;
= 1/C*x(i30-1i31) &O0;
1/L*(uc31-uc32) &0;
= 1/C*x(i31-132) &0;
1/L*(uc32-uc33) &0;
= 1/C*x(i32-i33) &0;
= 1/L*(uc33-uc34) &0;
= 1/Cx(i33-1i34) &O0;
1/L*(uc34-uc35) &0;
= 1/Cx(i34-i35) &0;
1/L*(uc35-uc36) &0;
= 1/Cx(i35-1i36) &0;
1/L*(uc36-uc37) &0;
= 1/C*x(i36-137) &0;
1/L*(uc37-uc38) &0;
= 1/C*x(i37-138) &0;
1/L*(uc38-uc39) &0;
= 1/C*x(i38-139) &O0;
1/L*(uc39-ucd40) &0;
= 1/Cx(i39-140) &O0;
= 1/L*(uc40-uc41) &O0;
= 1/Cx(i40-i41) &O0;
1/L*(ucd4l-ucd2) &0;
= 1/Cx(id41-i42) &O0;
1/L*(uc42-ucd3) &0;
= 1/Cx(id42-i43) &O0;
1/L*(ucd3-ucd4d) &0;
= 1/C*x(id43-1i44) &O0;
1/L*(uc44-ucd5) &0;
= 1/C*x(id44-145) &O0;
1/L*(uc45-ucd46) &0;
= 1/C*(i45-1i46) &0;
1/L*(uc46-ucd7) &0;
= 1/Cx(i46-147) &O0;
1/L*(uc47-ucd48) &0;
= 1/Cx(i47-148) &O0;
1/L*(uc48-ucd9) &0;
= 1/Cx(i48-1i49) &O0;
1/L*(uc49-ucb0) &0;
= 1/Cx(i49-i50) &O0;
= 1/L*(uc50-u2) &0;
R2%*ib50;

102

Appendix C

Electronic circuits

C.1 Diode
1 | setup {
2 dt = tmax/5000;
3 tmax = 4.5/f;
1 a = 1le-18;
5 b = 50;
6 R = 1e9;
7 om = 2%pixf;
8 f = 0.2;
9 |}
10
11 | graph {
12 format = pdf;
13 height = 420;
14 labels = u, u_R;
15 show = u, uR;
16 width = 640;
17 1%}
18
19 |u’ = omx*v &O0;
20 |v’ = -omxu &1;
21 iD’ = b*(iD+a)/(1+b*R*(iD+a))*v &O0;
22 |uR = iD*R;

C.2 Inverter

I | setup {

2 dt = tmax/1000;
3 tmax = 2e-7;

1 U = 3.3;

5 Ri = 0.120792;

6 Ropen = 0.601435;
7 Rclosed = 1el10;
8 C = 3.851953e-9;
9 |}

10

11 | graph {

12 colors = blue;
13 format = pdf;

14 height = 360;
15 labels = Out;

16 show = uc2;

17 width = 640;

18 xbase = 1e8;

103

19 xfmt = "%2.01";

20 xmult = "10°{-8} [s]";

21 xmultx = 1.09;

22 xmulty = -0.09;

23 xtics = 0, tmax/4, 3*xtmax/4;
24 yspace = 0.02;

25 |}

26
27 |x = 1, 0;
28
29 | //not (x)

30 |Rpl = x*Rclosed+(1-x)*Ropen;
31 |Rnl = x*Ropen+(l-x)*Rclosed;
32 |i = (U-ucl-uc2)/Ri;

33 |ucl’ = (i-ucl/Rpl)/C &U;

34 |uc2’ = (i-uc2*(1/Rnl1))/C &0;
C.3 NAND

1 | setup {

2 dt = tmax/1000;

3 tmax = 2e-7;

4 U = 3.3;

5 Ri = 0.120792;

6 Ropen = 0.601435;

7 Rclosed = 1e10;

8 C = 3.851953e-9;

9 |}

10

11 | graph {

12 colors = blue;

13 format = pdf;

14 height = 360;

15 labels = Out;

16 show = out;

17 width = 640;

18 xbase = 1e8;

19 xfmt = "%2.01";

20 xmult = "10°{-8} [s]";

21 xmultx = 1.09;

22 xmulty = -0.09;

23 xtics = 0, tmax/4, 3*tmax/4;

24 yspace = 0.02;

25 |}

26

27 |x = 1, 0, 0, 1;

28 |y =1, 1, 0, 0;

29

30 | //nand(x, y)

31 |Rpl = x*Rclosed+(1-x)*Ropen;

32 |Rnl = x*Ropen+(1-x)*Rclosed;

33 |Rp2 = y*Rclosed+(1-y)*Ropen;

34 |Rn2 = y*Ropen+(1-y)*Rclosed;

35 |i = (U-ucl2-uc3-uc4)/Ri;

36 |uc12’ = (i-uc12%(1/Rp1+1/Rp2))/(2xC) &U;

37 |uc3’ = (i-uc3/Rn1)/C &0;

38 |ucd4’ = (i-uc4/Rn2)/C &0;

39 | out = uc3+ucéd;

104

C.4 NAND with three inputs

I | setup {

2 dt = tmax/1000;

3 tmax = 4e-7;

4 U = 3.3;

5 Ri = 0.120792;

6 Ropen = 0.601435;

7 Rclosed = 1el0;

8 C = 3.851953e-9;

9 |}

10
11 | graph {

12 colors blue;
13 format = pdf;

14 height = 360;

15 labels = QOut;
16 show = out;

17 width 640 ;
18 xbase = 1e8;
19 xfmt = "%2.01";
20 xmult = "10°{-8} [s]";
21 xmultx = 1.09;
22 xmulty = -0.09;
23 xtics = 0, tmax/8, T7*tmax/8;
24 yspace = 0.02;
25 |}
26
27 |x = 0, 0, O, , 1, 1, 1, 1;
28 |y =0, 0, 1, 1, 0, 0, 1, 1;
29 |z =0, 1, 0, 1, 0, 1, 0, 1;
30
31 | //nand(x, y, z)
32 |Rpl = x*Rclosed+(1-x)*Ropen;
33 |Rnl = x*Ropen+(l-x)*Rclosed;
34 |Rp2 = y*Rclosed+(1-y)*Ropen;
35 |Rn2 = yxRopen+(l-y)*Rclosed;
36 |Rp3 = z*Rclosed+(1-z)*Ropen;
37 |Rn3 = zxRopen+(1-z)*Rclosed;
38 |i = (U-uc123-ucd4-uc5-uc6)/Ri;
39 |uc123’ = (i-uc123*(1/Rp1+1/Rp2+1/Rp3))/(3*C) &0;
40 |uc4’ = (i-uc4/Rn1)/C &U/3;
11 |ucb’ = (i-ucb5/Rn2)/C &U/3;
42 |uc6’ = (i-uc6/Rn3)/C &U/3;
43 | out = ucéd+ucb+uch;
C.5 NOR

I | setup {

2 dt = tmax/1000;

3 tmax = 2e-7;

4 U = 3.3;

5 Ri = 0.120792;

6 Ropen = 0.601435;

7 Rclosed = 1el0;

8 C = 3.851953e-9;

9}

10
11 | graph {

12 colors blue;
13 format = pdf;

14 height = 360;

15 labels = QOut;

16 show = uc34;

105

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

width = 640;

xbase = 1e8;

xfmt = "%2.01";

xmult = "10°{-8} [s]";
xmultx = 1.09;

xmulty = -0.09;

xtics = 0, tmax/4, 3*tmax/4;
yspace = 0.02;

x =20, 1, 1, 0;
y =0, 0, 1, 1;

//nor(x, y)

Rpl = x*Rclosed+(1-x)*Ropen;
Rnl = x*Ropen+(l-x)*Rclosed;
Rp2 = y*Rclosed+(1-y)*Ropen;
Rn2 = y*Ropen+(l-y)*Rclosed;
i = (U-ucl-uc2-uc34)/Ri;

ucl’ = (i-ucl/Rpl1)/C &0;
uc2’ = (i-uc2/Rp2)/C &O0;
uc34’ = (i-uc34*(1/Rnl1+1/Rn2))/(2%C)

&U;

C.6 NOR with three inputs

16
17
18
19
20

setup {
dt = tmax/1000;
tmax = 4e-T7;
U = 3.3;
Ri = 0.120792;
Ropen = 0.601435;
Rclosed = 1el0;
C = 3.851953e-9;
}

graph {
colors = blue;
format = pdf;
height = 360;
labels = OQOut;
show = uc4db6;
width = 640;

xbase = 1e8;

xfmt = "%2.01";

xmult = "10°{-8} [s]l";
xmultx = 1.09;

xmulty = -0.09;

xtics = 0, tmax/8, T7*tmax/8;
yspace = 0.02;

x =0, 0, 0, O, 1, 1, 1, 1;
y =0, 0, 1, 1, 0, 0, 1, 1;
z=20,1, 0,1, 0, 1, 0, 1;

//nor(x, y, z)

Rpl = x*Rclosed+(1-x)*Ropen;
Rnl = x*Ropen+(1-x)*Rclosed;
Rp2 = y*Rclosed+(1-y)*Ropen;
Rn2 = y*Ropen+(l-y)*Rclosed;
Rp3 = z*Rclosed+(1-z)*Ropen;
Rn3 = z*Ropen+(l-z)*Rclosed;
i = (U-ucl-uc2-uc3-uc456)/Ri;
ucl’ = (i-ucl/Rpl1l)/C &0;

uc2’ = (i-uc2/Rp2)/C &O0;

106

41 |ue3’ = (i-uc3/Rp3)/C &0;

42 | uc4b56’ = (i-uc456*(1/Rnl+1/Rn2+1/Rn3))/(3%C) &U;
C.7 XOR

I | setup {

2 dt = tmax/1000;

3 tmax = 4e-7;

4 U = 3.3;

5 Ri = 0.1;

6 Ropen = 0.5;

7 Rclosed = 1e10;

8 C = 4e-9;

9 |}

10

11 | graph {

12 format = pdf;

13 height = 360;

14 show = x, y, out, uch;

15 width = 640;

16 xbase = 1e8;

17 xfmt = "%2.01";

18 xmult = "10°{-8} [s]";

19 xmultx = 1.09;

20 xmulty = -0.09;

21 xtics = 0, tmax/4, 3*tmax/4;

22 yspace = 0.02;

23 |}

24

25 |x = 0, 0, 1, 1;

26 |y = 0, 1, 0, 1;

27

28 | //not (x)

29 |Rp1B = x*Rclosed+(1-x)*Ropen;

30 |Rn1B = x*Ropen+(1-x)*Rclosed;

31 |iB = (U-uc1B-ucB)/Ri;

32 |uciB’ = (iB-uci1B/Rp1B)/C &O0;

33 |ucB’ = (iB-ucB*(1/RniB))/C &U;

34

35 | //nand (not (x), y)

36 |in1D = 1 if ucB>=U/2;

37 |Rp1D = inlD*Rclosed+(1-iniD)*Ropen;

38 |Rn1D = inlD*Ropen+(1-iniD)*Rclosed;

39 |Rp2D = y*Rclosed+(1l-y)*Ropen;

40 |Rn2D = y*Ropen+(l-y)*Rclosed;

41 |iD = (U-ucD2-ucl1D-uc2D)/Ri;

42 |ucbD2’ = (iD-ucD2*(1/RpiD+1/Rp2D))/(2%C) &O0;

43 |uciD’ = (iD-uci1D/RniD)/C &U/2;

44 |uc2D’ = (iD-uc2D/Rn2D)/C &U/2;

15 |ucD = uclD+uc2D;

A€

47 | //not (y)

48 |Rp1C = y*Rclosed+(1-y)*Ropen;

49 |RnlC = y*Ropen+(l-y)*Rclosed;

50 [iC = (U-uci1C-ucC)/Ri;

51 |uc1C’ = (iC-uclC/RplC)/C &0;

52 |ucC’ = (iC-ucCx*(1/RniC))/C &U;

53

54 | //nand (x, not(y))

55 |Rp1lE = x*Rclosed+(1-x)*Ropen;

56 |Rn1lE = x*Ropen+(1-x)*Rclosed;

57 | in2E = 1 if ucC>=U/2;

58 |Rp2E = in2E*Rclosed+(1-in2E)*Ropen;

59 |Rn2E = in2E*Ropen+(1-in2E)*Rclosed;

60 |iE = (U-ucE2-uclE-uc2E)/Ri;

107

61
62
63
64

66

16
17
18
19
20
21
22
23
24
25
26
27
28
29

31
32
33

35
36
37
38

ucE2’ = (iE-ucE2*(1/Rpl1E+1/Rp2E))/(2%C)
uclE’ = (iE-uclE/RnlE)/C &U/2;

uc2E’ = (iE-uc2E/Rn2E)/C &U/2;

ucE = uclE+uc2E;

//nand (nand (not(x), y), nand(x, not(y)))

in1A = 1 if ucD>=U/2;

RplA = inlAx*Rclosed+(1-inlA)*Ropen;
RniA = inl1A*Ropen+(1-inlA)*Rclosed;
in2A = 1 if ucE>=U/2;

Rp2A = in2A*Rclosed+(1-in2A)*Ropen;
Rn2A = in2A*Ropen+(1-in2A)*Rclosed;
iA = (U-ucA2-uclA-uc2A)/Ri;

&0 ;

ucA2’ = (iA-ucA2*(1/Rp1A+1/Rp2A))/(2*C) &U;
uclA’ = (iA-uclA/Rni1A)/C &0;
uc2A’ = (iA-uc2A/Rn2A)/C &0;
ucA = uclA+uc2i;
out = 1 if ucA>=U/2;
C.8 XOR with three inputs

setup {

dt = tmax/1000;

tmax = 1.2e-6;

U = 3.3;

Ri = 0.1;

Ropen = 0.5;

Rclosed = 1el0;

C = 4e-9;
}
graph {

format = pdf;

height = 360;

show = x, y, z, out, uch;

width = 640;

xbase = 1e8;

xfmt = "%2.01";

xmult = "10°{-8} [s]";

xmultx = 1.09;

xmulty = -0.09;

xtics = 0, tmax/8, 7*tmax/8;

yspace = 0.02;
}
x =0, 0, 0, O, 1, 1, 1, 1;
y=0,0,1, 1, 0, 0, 1, 1;
z=20,1, 0, 1, 0, 1, 0, 1;
//nand (x, y)
Rp1B = x*Rclosed+(1-x)*Ropen;
RniB = x*Ropen+(1-x)*Rclosed;
Rp2B = y*Rclosed+(1-y)*Ropen;
Rn2B = y*Ropen+(l-y)*Rclosed;
iB = (U-ucB2-uci1B-uc2B)/Ri;
ucB2’ = (iB-ucB2*(1/Rp1B+1/Rp2B))/(2xC) &0;
uclB’ = (iB-uci1B/Rni1B)/C &U/2;
uc2B’ = (iB-uc2B/Rn2B)/C &U/2;
ucB = uciB+uc2B;

39
40
41
42
43
44

//nor (nand(x, y), z)

iniC = 1 if ucB>=U/2;

Rp1C = iniCx*Rclosed+(1-in1C)*Ropen;
RniC = iniC*Ropen+(1-iniC)*Rclosed;
Rp2C = z*Rclosed+(1-z)*Ropen;

108

45 |Rn2C = z*Ropen+(1-z)*Rclosed;
46 |iC = (U-uc1C-uc2C-ucC)/Ri;

47 |uclC’ = (iC-ucliC/RplC)/C &U/2;

18 |uc2C’ = (iC-uc2C/Rp2C)/C &U/2;

19 |ucC’ = (iC-ucC*(1/Rn1C+1/Rn2C))/(2xC) &O0;
50

51 | //nand(y, z)

52 |Rp1D = y*Rclosed+(1l-y)*Ropen;

53 |RnlD = y*Ropen+(l-y)*Rclosed;

54 |Rp2D = z*Rclosed+(1-z)*Ropen;

55 |Rn2D = z*Ropen+(1-z)*Rclosed;

56 |iD = (U-ucD2-uciD-uc2D)/Ri;

57 |ucD2’ = (iD-ucD2*(1/Rp1D+1/Rp2D))/(2%C) &0;
58 |uciD’ = (iD-uciD/RniD)/C &U/2;

59 |uc2D’ = (iD-uc2D/Rn2D)/C &U/2;

60 |ucD = uciD+uc2D;

61
62 | //nor(nand(y, z), x)

63 |in1lE = 1 if ucD>=U/2;

64 |RplE = inlE*Rclosed+(1-inlE)*Ropen;
65 |RnlE = inlExRopen+(1-inlE)*Rclosed;
66 | Rp2E = x*Rclosed+(1-x)*Ropen;

67 |Rn2E = x*Ropen+(1-x)*Rclosed;

68 |iE = (U-uclE-uc2E-ucE)/Ri;

69 |uclE’ = (iE-uclE/RplE)/C &U/2;

70 |uc2E’ = (iE-uc2E/Rp2E)/C &U/2;

71 |ucE’ = (iE-ucE*(1/RnilE+1/Rn2E))/(2*C) &0;
72

73 | //nand(x, z)

74 |Rp1lF = x*Rclosed+(1-x)*Ropen;

75 |RnlF = x*Ropen+(1-x)*Rclosed;

76 |Rp2F = z*Rclosed+(1-z)*Ropen;

77 |Rn2F = z*Ropen+(1-z)*Rclosed;

78 |iF = (U-ucF2-ucl1F-uc2F)/Ri;

79 |ucF2’ = (iF-ucF2*(1/Rp1F+1/Rp2F))/(2%C) &0;
80 |uclF’ = (iF-uclF/RnlF)/C &U/2;

81 |uc2F’ = (iF-uc2F/Rn2F)/C &U/2;

82 |ucF = uclF+uc2F;

83

84 | //nor (nand(x, z), y)

85 |in1lG = 1 if ucF>=U/2;

86 |Rp1lG = inlG*Rclosed+(1-inlG)*Ropen;
87 |Rn1lG = inlG*Ropen+(1-ini1G)*Rclosed;
88 |Rp2G = y*Rclosed+(1-y)*Ropen;

89 |Rn2G = y*Ropen+(l-y)*Rclosed;

90 |iG = (U-uc1G-uc2G-ucG)/Ri;

91 |uc1G’ = (iG-ucl1G/Rpl1G)/C &U/2;
92 |uc2G’ = (iG-uc2G/Rp2G)/C &U/2;
93 |ucG’ = (iG-ucG*(1/Rni1G+1/Rn2G))/(2*C) &0;

94
95 | //nor(x, y, z)

96 |RplH = x*Rclosed+(1-x)*Ropen;
97 |Rn1lH = x*Ropen+(1-x)*Rclosed;
98 |Rp2H = y*Rclosed+(1-y)*Ropen;
99 |Rn2H = y*Ropen+(l-y)*Rclosed;
100 |Rp3H = z*Rclosed+(1-z)*Ropen;
101 |Rn3H = z*Ropen+(1-z)*Rclosed;
102 |iH = (U-uclH-uc2H-uc3H-ucH)/Ri;

103 |uciH’ = (iH-uclH/Rp1lH)/C &O0;
104 |uc2H’ = (iH-uc2H/Rp2H)/C &0;
105 |uc3H’ = (iH-uc3H/Rp3H)/C &O0;
106 |ucH’ = (iH-ucH*(1/Rni1H+1/Rn2H+1/Rn3H))/(3*C) &U;

107
108 | //nor (nor (nand(x, y), z), nor(nand(y, z), x), nor(mand(x, z), y), nor(x,
109 | //y, z))

110 [in1lA = 1 if ucC>=U/2;

111 |Rp1lA = iniA*Rclosed+(1-inlA)*Ropen;

112 |Rn1A = inlA*Ropen+(1-inlA)*Rclosed;

109

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

in2A
Rp2A
Rn2A
in3A
Rp3A
Rn3A
indA
Rp4A
Rn4A
iA =
uclA
uc2A
uc3A
uc4A
uch’
out

1 if ucE>=U/2;
= in2A*Rclosed+(1-in2A)*Ropen;
= in2A*Ropen+(1-in2A)*Rclosed;
=1 if ucG>=U/2;
= in3A*Rclosed+(1-in3A)*Ropen;
= in3A*Ropen+(1-in3A)*Rclosed;
= 1 if ucH>=U/2;
= in4A*Rclosed+(1-in4A)*Ropen;
= in4A*Ropen+(1-ind4A)*Rclosed;
(U-uclA-uc2A-uc3A-ucd4A-ucA)/Ri;
> = (iA-ucl1A/Rp1lA)/C &U/4;
> = (iA-uc2A/Rp2A)/C &U/4;
> = (iA-uc3A/Rp3A)/C &U/4;
> = (iA-uc4A/Rp4A)/C &U/4;
= (iA-ucA*(1/Rn1A+1/Rn2A+1/Rn3A+1/Rn4A))/(4%C) &O0;
= 1 if ucA>=U/2;

110

Appendix D

Electronic circuits (SPICE)

D.1 Inverter

1 | Circuit

2 | .MODEL N3306M NMOS VT0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
3 |+ CGS0=28E-12 CGDO=3E-12 CBD=35E-12 PB=1

4 | .MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
5 |+ CGS0=28E-12 CGD0O=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

6 |Vdd 1 0 DC 3.3

7 |1Ri 2 1 0.1

8 |* x =1, 0

9 |V3 3 0 PWL(O 3.3 1e-07 3.3 1e-07 0 2e-07 0)

10 | * not(x)

11 | M4a 4 3 2 2 P3306M

12 |M4b 4 3 0 0 N3306M

13 | C4c 4 0 le-12

14 .TRAN 2e-10 2e-07 0 2e-10

15 .PRINT TRAN V(4)

16 | .PROBE
17 | .END
D.2 NAND
Circuit

1

2 | .MODEL N3306M NMOS VTO=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
3 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1

A .MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
5 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

6 |vdd 1 0 DC 3.3

7 |Ri 2 1 0.1

8 |* x =1, 0

9 |V3 3 0 PWL(O 3.3 1e-07 3.3 1e-07 0 2e-07 0)

10 |*y=1,0,0,1

11 |v4 4 0 PWL(O 3.3 5e-08 3.3 5e-08 0 1.5e-07 0O 1.5e-07 3.3 2e-07 3.3)
12 | * nand(x, y)

13 |Mba 5 3 2 2 P3306M

14 |M5b 5 4 2 2 P3306M
15 |MBc 5 3 6 6 N3306M
16 |M6d 6 4 0 O N3306M
17 | Cbe 5 0 1le-12

18 | .TRAN 2e-10 2e-07 0 2e-10
19 | .PRINT TRAN V(5)

20 | .PROBE

21 .END

111

D.3 NAND with three inputs

16
17
18
19
20
2

22
23
24
25
26
27
28

Circuit

.MODEL N3306M NMOS VT0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233

+ CGS0=28E-12 CGD0O=3E-12 CBD=35E-12 PB=1

.MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145

+ CGS0=28E-12 CGD0O=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

Vdd 1 0 DC 3.3

Ri 2 1 0.1

* x = 0, 1

V3 3 0 PWL(O O 2e-07 O 2e-07 3.3 4e-07 3.3)

* y =0, 1, 0, 1

V4 4 0 PWL(O O 1e-07 O 1e-07 3.3 2e-07 3.3 2e-07 0 3e-07 0 3e-07 3.3 4e-07
+ 3.3)

*x z =0, 1, 0, 1, 0, 1, 0, 1

V6 5 0 PWL(0O O 5e-08 0 5e-08 3.3 1e-07 3.3 1e-07 0 1.5e-07 O 1.5e-07 3.3
+ 2e-07 3.3 2e-07 0 2.5e-07 0 2.5e-07 3.3 3e-07 3.3 3e-07 0 3.5e-07 O

+ 3.5e-07 3.3 4e-07 3.3)

* nand(x, y, z)
M6a 6 3 2 2 P3306M
M6b 6 4 2 2 P3306M
M6c 6 5 2 2 P3306M
M6d 6 3 7 7 N3306M
M6e 7 4 8 8 N3306M
M6f 8 5 0 0 N3306M
Cég 6 0 1le-12

.TRAN 4e-10 4e-07 0 4e-10
.PRINT TRAN V(6)

.PROBE

.END

D.4 NOR

16
17
18
19
20
21

Circuit

.MODEL N3306M NMOS VTO0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
+ CGS0=28E-12 CGD0O=3E-12 CBD=35E-12 PB=1

.MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
+ CGS0=28E-12 CGD0O=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

Vdd 1 0 DC 3.3

Ri 2 1 0.1

* x =1, 0, 0, 1

V3 3 0 PWL(O 3.3 5e-08 3.3 5e-08 0 1.5e-07 0 1.5e-07 3.3 2e-07 3.3)
* y =1, 0

V4 4 0 PWL(O 3.3 1e-07 3.3 1e-07 0 2e-07 0)

* nor(x, y)

Mba 6 2 2 P3306M

M5b 6 6 P3306M

M5c 0 0 N3306M

Mbd 4 0 0 N3306M

Cbe 0 le-12

.TRAN 2e-10 2e-07 0 2e-10

.PRINT TRAN V(5)

.PROBE

.END

3
4
3

oo,

D.5 NOR with three inputs

1
2
3
4

Circuit

.MODEL N3306M NMOS VTO0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
+ CGS0=28E-12 CGD0O=3E-12 CBD=35E-12 PB=1

.MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145

112

5 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3
6 |vdd 1 0 DC 3.3
7 |1Ri 2 1 0.1
8 |* x =0, 1
9 |V3 3 0 PWL(O 0 2e-07 0 2e-07 3.3 4e-07 3.3)
10 |* y =0, 1, 0, 1
11 |[V4 4 0 PWL(O O 1e-07 O 1e-07 3.3 2e-07 3.3 2e-07 0 3e-07 0 3e-07 3.3 4e-07
12 |+ 3.3)
13 |* z =90, 1, 0, 1, 0, 1, 0, 1
14 |v6 5 0 PWL(O O 5e-08 0 5e-08 3.3 1e-07 3.3 1e-07 0 1.5e-07 0 1.5e-07 3.3
15 |+ 2e-07 3.3 2¢e-07 0 2.5e-07 0 2.5e-07 3.3 3e-07 3.3 3e-07 0 3.5e-07 O
16 |+ 3.5e-07 3.3 4e-07 3.3)
17 | * nor(x, y, z)
18 |M6a 7 3 2 2 P3306M
19 |M6b 8 4 7 7 P3306M
20 |M6c 6 5 8 8 P3306M
21 |M6d 6 3 0 O N3306M
22 |M6e 6 4 0 O N3306M
23 |M6f 6 5 0 0 N3306M
24 |C6g 6 0 1le-12
25 .TRAN 4e-10 4e-07 0 4e-10
26 .PRINT TRAN V(6)
27 .PROBE
28 | .END
D.6 XOR
1 | Circuit
2 .MODEL N3306M NMOS VTO0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
3 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1
4 .MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
5 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3
6 |vdd 1 0 DC 3.3
7 |Ri 2 1 0.1
8 |*x x =0, 0, 1, 1
9 |V3 3 0 PWL(0O 0O 2e-07 0 2e-07 3.3 4e-07 3.3)
10 |*xy =0, 1, 0, 1
11 |V4 4 0 PWL(O O 1e-07 0 1e-07 3.3 2e-07 3.3 2e-07 0 3e-07 0 3e-07 3.3 4e-07
12 |+ 3.3)
13 | * not(x)
14 |Mba 6 3 2 2 P3306M
15 |MBb 6 3 0 O N3306M
16 |R6c 5 6 0.1
17 | * nand(not(x), y)
18 |M7a 8 5 2 2 P3306M
19 |M7b 8 4 2 2 P3306M
20 |M7c 8 5 9 9 N3306M
21 |M7d 9 4 0 O N3306M
22 |R7e 7 8 0.1
23 | * not(y)
24 |M10a 11 4 2 2 P3306M
25 |M10b 11 4 0 0 N3306M
26 |R10c 10 11 0.1
27 | * nand(x, not(y))
28 | M12a 13 3 2 2 P3306M
29 |M12b 13 10 2 2 P3306M
30 |M12c 13 3 14 14 N3306M
31 |M124d 14 10 0 O N3306M
32 |R12e 12 13 0.1
33 | * nand(nand(not(x), y), nand(x, not(y)))
34 |M15a 15 7 2 2 P3306M
35 |M15b 15 12 2 2 P3306M
36 | M15c 15 7 17 17 N3306M
37 | M15d 17 12 0 O N3306M
38 | Cl5e 15 0 1le-12

113

39
40
41
42

.TRAN 4e-10 4e
.PRINT TRAN V(
.PROBE

.END

-07 0 4e-10
15)

D.7 XOR with three inputs

1 Circuit

2 .MODEL N3306M NMOS VT0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
3 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1

4 .MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
5 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3
6 |vdd 1 0 DC 3.3

7 |1Ri 2 1 0.1

8 |* x =0, 0, 0, 0, 1, 1, 1, 1

9 |V3 3 0 PWL(O 0 6e-07 0 6e-07 3.3 1.2e-06 3.3)

10 [*y=o0,0,1, 1, 0, 0, 1, 1

11 | V4 4 0 PWL(O 0 3e-07 0 3e-07 3.3 6e-07 3.3 6e-07 0 9e-07 0 9e-07 3.3
12 |+ 1.2e-06 3.3)

13 |*x z =90, 1, 0, 1, 0, 1, 0, 1

14 |v5 5 0 PWL(O O 1.5e-07 0 1.5e-07 3.3 3e-07 3.3 3e-07 0 4.5e-07 0 4.5e-07
15 |+ 3.3 6e-07 3.3 6e-07 0 7.5e-07 0 7.5e-07 3.3 9e-07 3.3 9e-07 0 1.05e-06 O
16 |+ 1.05e-06 3.3 1.2e-06 3.3)

17 | * nand(x, y)

18 |M6a 7 3 2 2 P3306M

19 |M6b 7 4 2 2 P3306M

20 |M6¢c 7 3 8 8 N3306M

21 |M6d 8 4 0 0 N3306M

22 |R6e 6 7 0.1

23 | * nor(mand(x, y), z)

24 |M9a 10 6 2 2 P3306M

25 |M9b 11 5 10 10 P3306M

26 |M9c 11 6 0 0 N3306M

27 |M9d 11 5 0 0 N3306M

28 |R9e 9 11 0.1

29 | * nand(y, z)

30 | M12a 13 4 2 2 P3306M

31 M12b 13 5 2 2 P3306M

32 | M12c 13 4 14 14 N3306M

33 | M12d 14 5 0 0 N3306M

34 |R12e 12 13 0.1

35 | * nor(nand(y, z), x)

36 | Miba 16 12 2 2 P3306M

37 | M15b 17 3 16 16 P3306M

38 | M1bc 17 12 0 O N3306M

39 | M15d 17 3 0 0O N3306M

40 | R15e 15 17 0.1

41 | * nand(x, z)

42 | M18a 19 3 2 2 P3306M

43 | M18b 19 5 2 2 P3306M

44 | M18c 19 3 20 20 N3306M

45 | M18d 20 5 0 0 N3306M

46 |R18e 18 19 0.1

47 | * nor(mand(x, z), y)

48 | M21a 22 18 2 2 P3306M

49 | M21b 23 4 22 22 P3306M

50 | M21c 23 18 0 0 N3306M

51 | M21d 23 4 0 0 N3306M

52 |R21e 21 23 0.1

53 | * nor(x, y, z)

54 | M24a 25 3 2 2 P3306M

55 | M24b 26 4 25 25 P3306M

56 | M24c 27 5 26 26 P3306M

57 | M24d 27 3 0 0 N3306M

58 | M24e 27 4 0 0 N3306M

114

60
61
62
63
64
65
66
67
68
69

M24f 27 5 0 0O N3306M
R24g 24 27 0.1
* nor (nor(nand(x, y), z), nor(nand(y, z),

*y,
M28a
M28b
M28c
M28d
M28e
M28f
M28g
M28h
c28i

.TRAN 1.

z))

29
30
31
28
28
28
28
28
28

9 2 2 P3306M

156 29 29 P3306M

21 30 30 P3306M

24 31 31 P3306M

9 0 0 N3306M

156 0 0 N3306M

21 0 O N3306M

24 0 0 N3306M

0 le-12

2e-09 1.2e-06 0 1.2e-09

.PRINT TRAN V(28)
.PROBE

.END

x),

nor (nand (x,

z),

y),

nor (x,

115

Appendix E

Latches and flip-flops

E.1 RS latch

I | setup {

2 dt = tmax/1000;

3 tmax = 4e-7;

A U = 3.3;

5 Ri = 0.120792;

6 Ropen = 0.601435;

7 Rclosed = 1el10;

8 C = 3.851953e-9;

9 |}

10
11 | graph {

12 format = pdf;
13 height = 360;

14 labels = Q, "{/Symbol \330}Q";
15 lalign = right;
16 show = ucA, ucB;

17 width = 640;
18 xfmt = "%2.01";

19 xmult = "10°{-7} [s]l";
20 xmultx = 1.09;
21 xmulty = -0.09;
22 xtics = 0, tmax/4, 3*xtmax/4;
23 yspace = 0.02;
24 |}

26 |R =1, 0, 0, O;
27 |8 = 0, 0, 1, O;

29 | //nor (R, Qn)

30 |Rp1A = R*Rclosed+(1-R)*Ropen;

I |Rn1lA = R*Ropen+(1-R)*Rclosed;

2 |Rp2A = Qn*Rclosed+(1-Qn)*Ropen;
3 |Rn2A = Qn*Ropen+(1-Qn)*Rclosed;
1 |iA = (U-uclA-uc2A-ucA)/Ri;
5

uclA’ = (iA-uclA/RplA)/C &U/2;
6 |uc2A’ = (iA-uc2A/Rp2A)/C &U/2;
7 |ucA’ = (iA-ucA*(1/Rn1A+1/Rn2A))/(2%xC) &0;

8 |Q = 1 if ucA>=U/2;

40 | //nor(Q, S)

11 |Rp1B = Q*Rclosed+(1-Q)*Ropen;
42 |Rn1B = Q*Ropen+(1-Q)*Rclosed;
13 |Rp2B = S*Rclosed+(1-S)*Ropen;
44 | Rn2B = S*Ropen+(1-S)*Rclosed;
15 |iB = (U-uc1B-uc2B-ucB)/Ri;

46 |uc1B’ = (iB-ucl1B/Rpl1B)/C &0;

117

47 |uc2B’ = (iB-uc2B/Rp2B)/C &0;
48 |ucB’ = (iB-ucB*(1/Rni1B+1/Rn2B))/(2*C) &U;
49 |Qn = 1 if ucB>=U0/2;

E.2 D latch
1 | setup {
2 reach = 5;
3 dt = tmax/1000;
4 tmax = be-T7;
5 U = 3.3;

Ri = 0.120792;
Ropen = 0.601435;

N1

8 Rclosed = 1el10;

9 C = 3.851953e-9;

10 |

11

12 | graph {

13 format = pdf;

14 height = 360;

15 labels = Q, "{/Symbol \330}Q";
16 lalign = right;

17 show = ucB, ucD;

18 width = 640;

19 xfmt = "%2.01";

20 xmult = "10°{-7} [sl";
21 xmultx = 1.09;

22 xmulty = -0.09;

23 xtics = 0, tmax/5, 4*tmax/5;
24 yspace = 0.02;

25 |}

26

27 |b =0, 1, 0, 0, 1;

28 |Wr = 0, 1, 0, 1, O;

29

30 |//nand (D, Wr)

31 |Rp1A = D*Rclosed+(1-D)*Ropen;
32 |RnlA = D*Ropen+(1-D)*Rclosed;
33 |Rp2A = Wr*Rclosed+(1-Wr)*Ropen;
34 |Rn2A = Wr*Ropen+(1-Wr)*Rclosed;
35 | iA = (U-ucA2-uclA-uc2A)/Ri;

36 |ucA2’ = (iA-ucA2#%(1/Rp1A+1/Rp24))/(2%C) &0;
37 |uclA’ = (iA-ucl1A/RnilA)/C &U/2;
38 |uc2A’ = (iA-uc2A/Rn2A)/C &U/2;

39 |ucA = uclA+uc2i;
40 |Dn = 1 if ucA>=U/2;

42 | //nand (Dn, Qn)

43 |Rp1B = Dn*Rclosed+(1-Dn)*Ropen;
14 | Rn1B = Dn*Ropen+(1-Dn)*Rclosed;
15 | Rp2B = Qn*Rclosed+(1-Qn)*Ropen;
46 | Rn2B = Qn*Ropen+(1-Qn)*Rclosed;
17 |iB = (U-ucB2-uci1B-uc2B)/Ri;

48 |ucB2’ = (iB-ucB2#*(1/Rp1B+1/Rp2B))/(2%C) &U;
49 |uc1B’ = (iB-uc1B/Rni1B)/C &0;

50 |uc2B’ = (iB-uc2B/Rn2B)/C &O0;

51 |ucB = uclB+uc2B;

52 1Q = 1 if ucB>=U/2;

53

54 | //nand (Dn, Wr)

55 | Rp1C = Dn*Rclosed+(1-Dn)*Ropen;
56 |Rn1C = Dn*Ropen+(1-Dn)*Rclosed;
57 |Rp2C = Wr*Rclosed+(1-Wr)*Ropen;
58 |Rn2C = Wr*Ropen+(1-Wr)*Rclosed;
5¢

iC = (U-ucC2-uciC-uc2C)/Ri;

118

60 |ucC2’ = (iC-ucC2*(1/Rp1C+1/Rp2C))/(2*%C) &O;

61 uciC’ = (iC-uciC/RniC)/C &U/2;
62 |uc2C’ = (iC-uc2C/Rn2C)/C &U/2;
63 |ucC = uclC+uc2C;

65 | //nand (nand (Dn, Wr), Q)

66 |iniD = 1 if ucC>=U/2;

67 |Rp1D = iniD*Rclosed+(1-iniD)*Ropen;
68 |Rn1lD = inlD*Ropen+(1-iniD)*Rclosed;
69 |Rp2D = Q*Rclosed+(1-Q)*Ropen;

70 |Rn2D = Q*Ropen+(1-Q)*Rclosed;

71 |iD = (U-ucD2-uciD-uc2D)/Ri;

72 |ucD2’ = (iD-ucD2*(1/Rp1D+1/Rp2D))/(2%C) &0;
73 |uciD’ = (iD-uci1D/Rni1D)/C &U/2;

74 |uc2D’ = (iD-uc2D/Rn2D)/C &U/2;

75 |ucD = uclD+uc2D;

76 |Qn = 1 if ucD>=U/2;

E.3 JK latch

1 | setup {

2 reach = 5;

3 dt = tmax/1000;

4 tmax = b5e-7;

5 U = 3.3;

6 Ri = 0.120792;

7 Ropen = 0.601435;

8 Rclosed = 1e10;

9 C = 3.851953e-9;

10 |}

11

12 | graph {

13 format = pdf;

14 height = 360;

15 labels = Q, "{/Symbol \330}Q";
16 lalign = right;

17 show = ucB, ucD;

18 width = 640;

19 xfmt = "%2.01";

20 xmult = "10°{-7} [sl";
21 xmultx = 1.09;

22 xmulty = -0.09;

23 xtics = 0, tmax/5, 4*tmax/5;
24 yspace = 0.02;

25 |}

26

27 13 = 0, 1, 0, 0, 1;
28 |K = 0, 0, 1, 0, 1;
29
30 | //nand(J, Qn)

31 |Rp1lA = J*Rclosed+(1-J)*Ropen;
32 |Rn1A = J*Ropen+(1-J)*Rclosed;
33 |Rp2A = Qn*Rclosed+(1-Qn)*Ropen;
34 |Rn2A = Qnx*Ropen+(1-Qn)*Rclosed;
35 |iA = (U-ucA2-uclA-uc2A)/Ri;

36 |ucA2’ = (iA-ucA2*(1/Rp1A+1/Rp2A))/(2*%C) &O0;
37 |uc1lA’ = (iA-uclA/RniA)/C &U/2;

38 |uc2A’ = (iA-uc2A/Rn2A)/C &U/2;

39 |ucA = uclA+uc2i;

A(

41 | //nand(Qn, nand(J, Qn))

42 |Rp1B = Qn*Rclosed+(1-Qn)*Ropen;

43 |RnlB = Qn*Ropen+(1-Qn)*Rclosed;

44 | in2B = 1 if ucA>=U/2;

45 |Rp2B = in2B*Rclosed+(1-in2B)*Ropen;

119

46
47
48
49

wt

Ut Ot C

ov Ot Ot

Y SR Qe

ot gt
2]

-~

Rn2B = in2B*Ropen+(1-in2B)*Rclosed;
iB = (U-ucB2-uci1B-uc2B)/Ri;

ucB2’ = (iB-ucB2*(1/Rp1B+1/Rp2B))/(2%*C)
uclB’ = (iB-uc1B/Rni1B)/C &0;

uc2B’ = (iB-uc2B/Rn2B)/C &0;

ucB uclB+uc2B;

Q = 1 if ucB>=U/2;

//nand (K, Q)

Rp1C = K*Rclosed+(1-K)*Ropen;
RniC = K*Ropen+(1-K)*Rclosed;
Rp2C = Q*Rclosed+(1-Q)*Ropen;
Rn2C = Q*Ropen+(1-Q)*Rclosed;
iC = (U-ucC2-uciC-uc2C)/Ri;

ucC2’ = (iC-ucC2*(1/Rp1C+1/Rp2C))/(2%C)
uciC’ = (iC-uci1C/RniC)/C &0;

uc2C’ = (iC-uc2C/Rn2C)/C &0;

ucC = uciC+uc2C;

//nand (Q, nand (K, Q))

Rp1lD = Q*Rclosed+(1-Q)*Ropen;

RniD = Q*Ropen+(1-Q)*Rclosed;

in2D = 1 if ucC>=U/2;

Rp2D = in2D*Rclosed+(1-in2D)*Ropen;
Rn2D = in2D*Ropen+(1-in2D)*Rclosed;
iD = (U-ucD2-uciD-uc2D)/Ri;

ucD2’ = (iD-ucD2*(1/Rp1D+1/Rp2D))/(2%C)
uclD’ = (iD-uci1D/Rni1D)/C &U/2;

uc2D’ = (iD-uc2D/Rn2D)/C &U/2;

ucD = uclD+uc2D;

Qn = 1 if ucD>=U/2;

&U;

&U;

&0 ;

E.4 D flip-flop

(=2

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

setup {
dt = tmax/1000;
tmax = le-6;
U = 3.3;
Ri = 0.120792;
Ropen = 0.601435;
Rclosed = 1el0;
C = 3.851953e-9;
}

graph {
format = pdf;
height = 360;
labels = Q, "{/Symbol \330}Q";
lalign = right;

mxtics = 2;

show = ucB, ucD;

width = 640;

xfmt = "%2.01";

xmult = "10°{-7} [sl";
xmultx = 1.09;

xmulty = -0.09;

xtics = 0, tmax/5, 4.5%xtmax/5;
yspace = 0.02;

//nand (D, Wr, CLK)

120

W W w
J O U s W N

o R W W W W W W
D = O © 00

o~
W

[olcle/olES B BN BN BN HE EN BN BN N @)
— O WO U WK OO

82

;X}

RplA = DxRclosed+(1-D)*Ropen;
Rnl1A = DxRopen+(1-D)*Rclosed;
Rp2A = WrxRclosed+(1-Wr)*Ropen;
Rn2A = Wr*Ropen+(1-Wr)*Rclosed;
Rp3A = CLK*Rclosed+(1-CLK)*Ropen;
Rn3A = CLK*Ropen+(1-CLK)*Rclosed;

iA = (U-ucA2-uclA-uc2A-uc3A)/Ri;

ucA2’ = (iA-ucA2*(1/Rp1A+1/Rp2A+1/Rp3A))/(3%C) &O0;
uclA’ = (iA-uci1A/Rni1A)/C &U/3;

uc2A’ = (iA-uc2A/Rn2A)/C &U/3;

uc3A’ = (iA-uc3A/Rn3A)/C &U/3;

ucA = uclA+uc2A+uc3i;

Dn = 1 if ucA>=U/2;

//nand (Dn, Qn)

RplB = Dn*Rclosed+(1-Dn)*Ropen;
RniB = Dn*Ropen+(1-Dn)*Rclosed;
Rp2B = Qn*Rclosed+(1-Qn)*Ropen;
Rn2B = Qn*Ropen+(1-Qn)*Rclosed;

iB = (U-ucB2-uciB-uc2B)/Ri;

ucB2’ = (iB-ucB2*(1/Rp1B+1/Rp2B))/(2*C) &U;
uclB’ = (iB-uc1B/Rn1B)/C &0;

uc2B’ = (iB-uc2B/Rn2B)/C &0;

ucB = uclB+uc2B;

Q = 1 if ucB>=U/2;

//nand (Dn, Wr, CLK)

Rp1l
Rn1l
Rp2
Rn2
Rp3
Rn3
iC

ucC
ucl
uc?2
uc3
ucC

C = Dn*Rclosed+(1-Dn)*Ropen;
C = Dn*Ropen+(1-Dn)*Rclosed;
C = WrxRclosed+(1-Wr)*Ropen;
C = WrxRopen+(1-Wr)*Rclosed;

C = CLK*Rclosed+(1-CLK)*Ropen;
C = CLK*Ropen+(1-CLK)*Rclosed;
= (U-ucC2-uciC-uc2C-uc3C)/Ri;
2’ = (iC-ucC2*(1/Rp1C+1/Rp2C+1/Rp3C))/(3*C) &U;
C’> = (iC-uciC/Rni1C)/C &0;
C’ = (iC-uc2C/Rn2C)/C &0;
C’> = (iC-uc3C/Rn3C)/C &0;
= uclC+uc2C+uc3C;

//nand (Q, nand(Dn, Wr, CLK))

Rp1D = Q*Rclosed+(1-Q)*Ropen;

RniD = Q*Ropen+(1-Q)*Rclosed;

in2D = 1 if ucC>=U/2;

Rp2D = in2D*Rclosed+(1-in2D)*Ropen;
Rn2D = in2D*Ropen+(1-in2D)*Rclosed;

iD = (U-ucD2-uciD-uc2D)/Ri;

ucD2’ = (iD-ucD2#*(1/Rp1D+1/Rp2D))/(2*C) &O0;
uciD’ = (iD-uci1D/RniD)/C &U/2;

uc2D’ = (iD-uc2D/Rn2D)/C &U/2;

ucD = uciD+uc2D;

Qn = 1 if ucD>=U/2;

E.5 JK flip-flop

set
d
t
U

up {
t = tmax/1000;
max = le-6;

= 3.3;

Ri = 0.120792;
Ropen = 0.601435;
Rclosed = 1e10;

C

= 3.851953e-9;

121

11
12
13
14

15
16
17
18
19
20

46

QU Ut O O O O Ot O U U 4k
© 00O Ui WN -

60
61
62
63
64
65
66
67
68
69
70

-3

J =

~
D O W N =

1~

-~
(=2}

~
~

~
oo

graph

{

format = pdf;

height = 360;

labels = Q, "{/Symbol \330}Q";
lalign = right;

mxtics = 2;

show = ucG, ucl;

width = 640;

xfmt = "%2.01";

xmult = "10°{-7} [sl";
xmultx = 1.09;

xmulty = -0.09;

xtics = 0, tmax/5, 4.5xtmax/5;
yspace = 0.02;

//nand (J, Qn2, CLK)

Rp1lA
RnilA
Rp2A
Rn2A
Rp3A
Rn3A
iA =
ucA2’
uclA’
uc2A’
uc3A’
uch =

J*xRclosed+(1-J)*Ropen;

= J*Ropen+(1-J)*Rclosed;

= Qn2*Rclosed+(1-Qn2)*Ropen;
= Qn2*Ropen+(1-Qn2)*Rclosed;
= CLK*Rclosed+(1-CLK)*Ropen;

CLK*Ropen+(1-CLK)*Rclosed;
(U-ucA2-ucilA-uc2A-uc3A)/Ri;

= (iA-ucA2*(1/Rp1A+1/Rp2A+1/Rp3A))/(3%C) &0;
= (iA-uc1A/Rn1A)/C &U/3;

= (iA-uc2A/Rn2A)/C &U/3;

= (iA-uc3A/Rn3A)/C &U/3;
uclA+uc2A+uc3i;

//nand (Qni1, nand(J, Qn2, CLK))

Rp1B
Rn1B
in2B
Rp2B
Rn2B
iB =
ucB2’
uclB’
uc?2B’
ucB =

Q1 =

Qni*Rclosed+(1-Qnl)*Ropen;

= QnixRopen+(1-Qnil)*Rclosed;

= 1 if ucA>=U/2;

= in2B*Rclosed+(1-in2B)*Ropen;
= in2B*Ropen+(1-in2B)*Rclosed;

(U-ucB2-uci1B-uc2B)/Ri;

= (iB-ucB2*(1/Rpl1B+1/Rp2B))/(2%C) &U;
= (iB-uc1B/Rn1B)/C &O0;

= (iB-uc2B/Rn2B)/C &O0;

uclB+uc2B;

1 if ucB>=U/2;

//nand (K, Q2, CLK)

RpiC
RniC
Rp2C
Rn2C
Rp3C
Rn3C
iCc =
ucC2’
uclcC’
uc2C’
uc3C’
ucC =

= KxRclosed+(1-K)*Ropen;

= K*Ropen+(1-K)*Rclosed;

= Q2*Rclosed+(1-Q2)*Ropen;

= Q2*Ropen+(1-Q2)*Rclosed;

= CLK*Rclosed+(1-CLK)*Ropen;

CLK*Ropen+(1-CLK)*Rclosed;
(U-ucC2-uciC-uc2C-uc3C)/Ri;

= (iC-ucC2*(1/Rp1C+1/Rp2C+1/Rp3C))/(3+C) &0;
= (iC-uc1C/RniC)/C &U/3;

= (iC-uc2C/Rn2C)/C &U/3;

= (iC-uc3C/Rn3C)/C &U/3;

uclC+uc2C+uc3C;

//nand (Q1, nand (K, Q2, CLK))

Rp1D
Rni1D
in2D
Rp2D
Rn2D
iD =

= Q1*Rclosed+(1-Q1)*Ropen;
= Q1*Ropen+(1-Q1)*Rclosed;

=1 if ucC>=U/2;

= in2D*Rclosed+(1-in2D)*Ropen;
= in2D*Ropen+(1-in2D)*Rclosed;
(U-ucD2-uciD-uc2D)/Ri;

122

79 |ucD2’ = (iD-ucD2*(1/Rp1D+1/Rp2D))/(2*%C) &O;
8) |uciD’ = (iD-uc1D/RniD)/C &U/2;

81l |uc2D’ = (iD-uc2D/Rn2D)/C &U/2;

82 |ucD = uciD+uc2D;

83 |Qn1 = 1 if ucD>=U/2;

84
85 | //not (CLK)

86 |RplE = CLK*Rclosed+(1-CLK)*Ropen;
87 |Rn1lE = CLK*Ropen+(1-CLK)*Rclosed;
88 |iE = (U-uclE-ucE)/Ri;

89 |uclE’ = (iE-uclE/RplE)/C &O0;

90 |ucE’ = (iE-ucE*(1/RnlE))/C &U;

91 |CLKn = 1 if ucE>=U/2;

92
93 | //nand (Q1, CLKn)

94 |Rp1lF = Q1*Rclosed+(1-Q1)*Ropen;

95 |Rn1lF = Q1lx*Ropen+(1-Q1)*Rclosed;

96 | Rp2F = CLKn*Rclosed+(1-CLKn)*Ropen;
97 |Rn2F = CLKn*Ropen+(1-CLKn)*Rclosed;
98 |iF = (U-ucF2-uclF-uc2F)/Ri;

99 |ucF2’ = (iF-ucF2*(1/Rp1F+1/Rp2F))/(2%C) &0;
100 |uclF’ = (iF-uclF/Rni1F)/C &U/2;
101 |uc2F’ = (iF-uc2F/Rn2F)/C &U/2;

102 |ucF = uclF+uc2F;
103
104 | //nand(Qn2, nand(Q1, CLKn))

105 |Rp1G = Qn2*Rclosed+(1-Qn2)*Ropen;
106 |Rn1G = Qn2*Ropen+(1-Qn2)*Rclosed;
107 | in2G = 1 if ucF>=U/2;

108 |Rp2G = in2G*Rclosed+(1-in2G)*Ropen;
109 |Rn2G = in2G*Ropen+(1-in2G)*Rclosed;
110 |iG = (U-ucG2-uclG-uc2G)/Ri;

111 |ucG2’ = (iG-ucG2*(1/Rp1G+1/Rp2G))/(2%C) &U;
112 |uc1G’ = (iG-uc1G/RniG)/C &0;
113 |uc2G’ = (iG-uc2G/Rn2G)/C &0;

114 |ucG = uclG+uc2G;
115 |Q2 = 1 if ucG>=U/2;
116
117 | //nand (Qni, CLKn)

118 |Rp1H = Qni*Rclosed+(1-Qnl)*Ropen;
119 |Rn1H = Qnix*Ropen+(1-Qnl)*Rclosed;
120 | Rp2H = CLKn*Rclosed+(1-CLKn)*Ropen;
121 |Rn2H = CLKn*Ropen+(1-CLKn)*Rclosed;
122 | iH = (U-ucH2-uclH-uc2H)/Ri;

123 |ucH2’ = (iH-ucH2*(1/Rp1H+1/Rp2H))/(2%C) &O0;
124 |uc1H’ = (iH-uclH/Rni1H)/C &U/2;

125 |uc2H’ = (iH-uc2H/Rn2H)/C &U/2;

126 |ucH = uclH+uc2H;

127

128 | //nand (Q2, nand(Qni, CLKn))

129 |Rp1I = Q2*Rclosed+(1-Q2)*Ropen;

130 |Rn1I = Q2*Ropen+(1-Q2)*Rclosed;

131 | in2I = 1 if ucH>=U/2;

132 |Rp2I = in2I*Rclosed+(1-in2I)*Ropen;
133 |Rn2I = in2I*Ropen+(1-in2I)*Rclosed;
134 |iI = (U-ucI2-ucl1I-uc2I)/Ri;

135 |ucI2’ = (iI-ucI2*(1/Rp1I+1/Rp2I))/(2*C) &O0;
136 |uc1I’ = (iI-ucl1I/Rni1I)/C &U/2;
137 |uc2I’ = (iI-uc2I/Rn2I)/C &U/2;

138 |ucI = uclI+uc2Il;
139 |Qn2 = 1 if ucI>=U/2;

E.6 T flip-flop

1 ‘setup {

123

NS NN

N

10
1

12
13
14
15
16
17
18
19
20
21
22

36

39
40
41
42
43
A4
A5
46
47
48
49

Gl Ot Ot Ot Ot Ot Ot Ot Ot Ot
© 00O Utk W~ O

60
61
62
63
64
65
66
67
68
69

tmax = le-6;

dt = tmax/1000;
U = 3.3;

Ri = 0.120792;

Ropen = 0.601435;
Rclosed = 1el0;

C =

}

3.851953e-9;

graph {
format = pdf;
height = 360;
labels = Q, "{/Symbol \330}Q";
lalign = right;

mxtics = 2;

show = ucG, ucl;

width = 640;

xfmt = "%2.01";

xmult = "10°{-7} [sl";
xmultx = 1.09;

xmulty = -0.09;

xtics = 0, tmax/5, 4.5xtmax/5;
yspace = 0.02;

//not (CLK)

Rp1A
RnilA
iA =
uclA’
uch’
CLKn

= CLK*Rclosed+(1-CLK)*Ropen;
= CLK*Ropen+(1-CLK)*Rclosed;

(U-uclA-uchA)/Ri;
= (iA-uc1lA/Rp1lA)/C &0;

= (iA-ucA*(1/Rn1A))/C &U;
= 1 if ucA>=U0/2;

//nand (RESn, T, Qn, CLK, En)

RpiB
Rni1B
Rp2B
Rn2B
Rp3B
Rn3B
Rp4B
Rn4B
Rp5B
RnbB
iB =
ucB2’
uclB’
uc2B’
uc3B’
uc4B’
ucb5B’

ucB =

= RESn*Rclosed+(1-RESn)*Ropen;
= RESn*Ropen+(1-RESn)*Rclosed;
= TxRclosed+(1-T)*Ropen;

= T*Ropen+(1-T)*Rclosed;

= Qn*Rclosed+(1-Qn)*Ropen;

= Qn*Ropen+(1-Qn)*Rclosed;

= CLK*Rclosed+(1-CLK)*Ropen;

= CLK*Ropen+(1-CLK)*Rclosed;

= En*Rclosed+(1-En)*Ropen;

= En*Ropen+(1-En)*Rclosed;

(U-ucB2-uc1B-uc2B-uc3B-uc4B-uc5B)/Ri;

= (iB-ucB2#*(1/Rp1B+1/Rp2B+1/Rp3B+1/Rp4B+1/Rp5B))/(5*C) &0;
(iB-uc1B/Rni1B)/C &U/5;

(iB-uc2B/Rn2B)/C &U/5;

(iB-uc3B/Rn3B)/C &U/5;

(iB-uc4B/Rn4B)/C &U/5;

(iB-uc5B/Rn5B)/C &U/5;

uclB+uc2B+uc3B+uc4B+ucbhbB;

//nand (QMn, nand (RESn, T, Qn, CLK, En))

RpiC
RniC
in2C
Rp2C
Rn2C
iCc =
ucC2’
uclC’
uc2C’

= QMn*Rclosed+(1-QMn)*Ropen;

= QMn*Ropen+(1-QMn)*Rclosed;

= 1 if ucB>=U/2;

= in2C*Rclosed+(1-in2C)*Ropen;

in2C*Ropen+(1-in2C)*Rclosed;
(U-ucC2-uciC-uc2C)/Ri;
= (iC-ucC2%(1/Rp1C+1/Rp2C))/(2%C) &U;
= (iC-uc1C/RniC)/C &0;
= (iC-uc2C/Rn2C)/C &0;

124

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

ucC =
QM =

//nan
Rp1D
Rni1D
Rp2D
Rn2D
Rp3D
Rn3D
Rp4D
Rn4D
iD =
ucD2’
uclD’
uc2D’
uc3D’
ucé4D’
uch =

//nan
RplE
RnlE
Rp2E
Rn2E
in3E
Rp3E
Rn3E
iE =
uck2’
uclE’
uc2E’
uc3E’
uck =
QMn =

//nan
Rpl1F
RnlF
Rp2F
Rn2F
Rp3F
Rn3F
iF =
ucF2’
uclF’
uc2F’
uc3F’
ucF =

uclC+uc2C;
1 if ucC>=U/2;

d(T, Q, CLK, En)

= T*Rclosed+(1-T)*Ropen;

= T*Ropen+(1-T)*Rclosed;

= Q*Rclosed+(1-Q)*Ropen;

= Q*Ropen+(1-Q)*Rclosed;

= CLK*Rclosed+(1-CLK)*Ropen;

= CLK*Ropen+(1-CLK)*Rclosed;

= En*Rclosed+(1-En)*Ropen;

= En*Ropen+(1-En)*Rclosed;
(U-ucD2-uciD-uc2D-uc3D-uc4D)/Ri;
= (iD-ucD2*(1/Rp1D+1/Rp2D+1/Rp3D+1/Rp4D))/(4*C) &O0;
= (iD-uc1D/Rni1D)/C &U/4;

= (iD-uc2D/Rn2D)/C &U/4;

= (iD-uc3D/Rn3D)/C &U/4;

= (iD-uc4D/Rn4D)/C &U/4;
uclD+uc2D+uc3D+ucé4D;

d(RESn, QM, nand(T, Q, CLK, En))
= RESn*Rclosed+(1-RESn)*Ropen;
= RESn*Ropen+(1-RESn)*Rclosed;
= QM*Rclosed+(1-QM)*Ropen;
= QM*Ropen+(1-QM)*Rclosed;
= 1 if ucD>=U/2;
= in3E*Rclosed+(1-in3E)*Ropen;
= in3E*Ropen+(1-in3E)*Rclosed;
(U-ucE2-uclE-uc2E-uc3E)/Ri;
= (iE-ucE2*(1/Rp1E+1/Rp2E+1/Rp3E))/(3*C) &U;
= (iE-uclE/RnlE)/C &0;
= (iE-uc2E/Rn2E)/C &O0;
= (iE-uc3E/Rn3E)/C &0;
uclE+uc2E+uc3E;
1 if ucE>=U/2;

d (RESn, QM, CLKn)
= RESn*Rclosed+(1-RESn)*Ropen;
= RESn*Ropen+(1-RESn)*Rclosed;
= QM*Rclosed+(1-QM)*Ropen;
= QM*Ropen+(1-QM)*Rclosed;
= CLKn*Rclosed+(1-CLKn)*Ropen;
= CLKn*Ropen+(1-CLKn)*Rclosed;
(U-ucF2-uclF-uc2F-uc3F)/Ri;
= (iF-ucF2*(1/Rp1F+1/Rp2F+1/Rp3F))/(3%C) &0;
= (iF-uc1F/RniF)/C &U/3;
= (iF-uc2F/Rn2F)/C &U/3;
= (iF-uc3F/Rn3F)/C &U/3;
uclF+uc2F+uc3F;

//nand (Qn, nand (RESn, QM, CLKn))

RplG
RnlG
in2G
Rp2G
Rn2G
iG =
ucG2’
uclG’
uc2G’
ucG =
Q =1

= Qn*Rclosed+(1-Qn)*Ropen;
= Qn*Ropen+(1-Qn)*Rclosed;
= 1 if ucF>=U/2;
= in2G*Rclosed+(1-in2G)*Ropen;
= in2G*Ropen+(1-in2G)*Rclosed;
(U-ucG2-uclG-uc2G)/Ri;

= (iG-ucG2*(1/Rp1G+1/Rp2G))/(2%C) &U;
= (iG-ucl1G/Rnl1G)/C &O0;

= (iG-uc2G/Rn2G)/C &0;
uclG+uc2G;

if ucG>=U0/2;

//nand (QMn, CLKn)

RplH
RniH
Rp2H
Rn2H

= QMn*Rclosed+(1-QMn)*Ropen;
= QMn*Ropen+(1-QMn)*Rclosed;
= CLKn*Rclosed+(1-CLKn)*Ropen;
= CLKn*Ropen+(1-CLKn)*Rclosed;

125

138 | iH = (U-ucH2-uclH-uc2H)/Ri;

139 |ucH2’ = (iH-ucH2*(1/Rpl1H+1/Rp2H))/(2*C) &O0;
140 |uci1H’ = (iH-uc1H/Rni1H)/C &U/2;

141 |uc2H’ = (iH-uc2H/Rn2H)/C &U/2;

142 | ucH = uclH+uc2H;

143

144 | //nand (RESn, Q, nand (QMn, CLKn))

145 | Rp1I = RESn*Rclosed+(1-RESn)*Ropen;

146 | Rn1I = RESn*Ropen+(1-RESn)*Rclosed;

147 | Rp2I = Q*Rclosed+(1-Q)*Ropen;

148 | Rn2I = Q*Ropen+(1-Q)*Rclosed;

149 | in3I = 1 if ucH>=U/2;

150 |Rp3I = in3I*Rclosed+(1-in3I)*Ropen;

151 |Rn3I = in3I*Ropen+(1-in3I)*Rclosed;

152 |iI = (U-ucI2-uclI-uc2I-uc3I)/Ri;

153 |ucI2’ = (iI-ucI2*(1/Rp1I+1/Rp2I+1/Rp3I))/(3%C) &O0;

154 |ucl1I’ = (iI-uclI/Rn1I)/C &U/3;
155 |uec2I’ = (iI-uc2I/Rn2I)/C &U/3;
156 |uc3I’ = (iI-uc3I/Rn3I)/C &U/3;
157 |ucl = uclI+uc2Il+uc3I;

158 |Qn = 1 if ucI>=U/2;

126

Appendix F

Latches and flip-flops (SPICE)

F.1 RS latch

1 |Circuit

2 | .MODEL N3306M NMOS VT0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
3 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1

4 | .MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
5 |+ CGS0=28E-12 CGDO0=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

6 |Vdd 1 0 DC 3.3

7 1Ri 2 1 0.1

8 |* R=1, 0, 0, O

9 |V3 3 0 PWL(O 3.3 1e-07 3.3 1e-07 O 4e-07 0)

10 [*» S =0, 0, 1, O

11 |V4 4 0 PWL(O 0 2e-07 0 2e-07 3.3 3e-07 3.3 3e-07 0 4e-07 0)

12 |* Q = nor(R, Qn)
13 |Mba 6 3 2 2 P3306M
14 |M5b 8 7 6 6 P3306M
15 |Mbc 8 3 0 0 N3306M
16 |M6d 8 7 0 0O N3306M
17 |Rbe 5 8 0.1

18 |C5f 8 0 1le-12

19 [* Qn = nor(S, Q)

M7a 9 4 2 2 P3306M
M7b 10 5 9 9 P3306M
M7c 10 4 0 O N3306M
M7d 10 5 0 O N3306M
R7e 7 10 0.1

C7f 10 0 1le-12

.TRAN 4e-10 4e-07 0 4e-10
.PRINT TRAN V(5) V(7)
.PROBE

.END

o
= o

=~ W N

NN DNDNDNDNDDNDNDN
© 00 ~J O Ut

F.2 D latch

1 | Circuit

2 | .MODEL N3306M NMOS VTO=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
3 |+ CGS0=28E-12 CGD0O=3E-12 CBD=35E-12 PB=1

4 | .MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
5 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

6 |vdd 1 0 DC 3.3

7 |1Ri 2 1 0.1

8 |* D=0, 1, 0, 0, 1

9 |V3 3 0 PWL(O 0 1e-07 0 1e-07 3.3 2e-07 3.3 2e-07 0 4e-07 0 4e-07 3.3
10 |+ 5e-07 3.3)

11 [* Wr = 0, 1, O, 1, O

127

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

V4 4 0 PWL(O O 1e-07 0 1e-07 3.3 2e-07 3.3 2e-07 0 3e-07 0 3e-07 3.3

+ 4e-07 3.3 4e-07 0 5e-07 0)
* Dn = nand(D, Wr)

M5a 6 3 2 2 P3306M
M5b 6 4 2 2 P3306M
M5c 6 3 7 7 N3306M
Mbd 7 4 0 0 N3306M
Rbe 5 6 0.1

C5f 6 0 1e-12

* Q = nand(Dn, Qn)
M8a 9 5 2 2 P3306M
M8b 9 10 2 2 P3306M
M8c 9 5 11 11 N3306M

M8d 11 10 O O N3306M

R8e 8 9 0.1

C8f 9 0 1e-12

* nand(Dn, Wr)

M12a 13 5 2 2 P3306M

M12b 13 4 2 2 P3306M

M12c 13 5 14 14 N3306M
M12d 14 4 0 O N3306M

R12e 12 13 0.1

* Qn = nand(nand(Dn, Wr), Q)
M10a 15 12 2 2 P3306M
M10b 15 8 2 2 P3306M

M10c 15 12 16 16 N3306M
M10d 16 8 0 O N3306M

R10e 10 15 0.1

C10f 15 0 1le-12

.TRAN 5e-10 5e-07 0 5e-10
.PRINT TRAN V(8) V(10)
.PROBE

.END

F.3 JK latch

1 | Circuit

2 | .MODEL N3306M NMOS VTO0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
3 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1

4 .MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
5 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

6 |vdd 1 0 DC 3.3

7 |Ri 2 1 0.1

8 |* J=o0, 1, 0, 0, 1

9 |V3 3 0 PWL(O 0 1e-07 0 1e-07 3.3 2e-07 3.3 2e-07 0 4e-07 0 4e-07
10 |+ 3.3)

11 | K =0, 0, 1, 0, 1

12 |Vv4 4 0 PWL(O O 2e-07 0 2e-07 3.3 3e-07 3.3 3e-07 0 4e-07 0 4e-07
13 |+ 3.3)

14 | * nand(J, Qn)

15 |Mba 6 3 2 2 P3306M

16 |MBb 6 7 2 2 P3306M

17 |Mbc 6 3 8 8 N3306M

18 |Mbd 8 7 0 O N3306M

19 |Rbe 5 6 0.1

20 [* Q@ = nand(Qn, nand(J, Qn))

21 |M9a 10 7 2 2 P3306M

22 |M9b 10 5 2 2 P3306M

23 |M9¢c 10 7 11 11 N3306M

24 1M9d 11 5 0 0 N3306M

25 |R9e 9 10 0.1

26 | C9f 10 0 1le-12

27 | * nand (K, Q)

28 |M12a 13 4 2 2 P3306M

29 | M12b 13 9 2 2 P3306M

128

3.3 5e-07

3.3 5e-07

30 |M12c 13 4 14 14 N3306M

31 M12d 14 9 0 O N3306M

32 |R12e 12 13 0.1

33 |* Qn = nand(Q, nand (X, Q))
34 |M7a 15 9 2 2 P3306M

35 |M7b 15 12 2 2 P3306M

36 |M7c 15 9 16 16 N3306M

37 |M7d 16 12 0 0 N3306M

38 |R7e 7 15 0.1

39 |C7f 156 0 1le-12

40 | .TRAN 5e-10 5e-07 0 5e-10
41 | .PRINT TRAN V(9) V(7)

42 | .PROBE

43 | .END

F.4 D flip-flop

1 | Circuit

2 .MODEL N3306M NMOS VTO0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
3 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1

4 .MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
5 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

6 |vdd 1 0 DC 3.3

7 |Ri 2 1 0.1

8 |*» D=0, 1, 0, 0, 1

9 |V3 3 0 PWL(O O 2e-07 0 2e-07 3.3 4e-07 3.3 4e-07 0 8e-07 0 8e-07 3.3 1e-06
10 |+ 3.3)
11 |+ cLx =1, o, 1, 0, 1, 0, 1, 0, 1, O

12 |V4 4 0 PWL(O 3.3 1e-07 3.3 1e-07 0 2e-07 0 2e-07 3.3 3e-07 3.3 3e-07 O
13 |+ 4e-07 0 4e-07 3.3 5e-07 3.3 5e-07 0 6e-07 0 6e-07 3.3 7e-07 3.3 7e-07 O
14 |+ 8e-07 0 8e-07 3.3 9e-07 3.3 9e-07 0 1e-06 0)
15 |* Wr = 0, 1, 0, 1, 1

16 |V6 5 0 PWL(O O 2e-07 0O 2e-07 3.3 4e-07 3.3 4e-07 0 6e-07 0 6e-07 3.3 1e-06
17 |+ 3.3)
18 | * Dn = nand(D, Wr, CLK)

19 |M6a 7 3 2 2 P3306M
20 |M6b 7 5 2 2 P3306M
21 |M6c 7 4 2 2 P3306M
22 |M6d 7 3 8 8 N3306M
23 |M6e 8 5 9 9 N3306M
24 |M6f 9 4 0 O N3306M
25 |R6g 6 7 0.1
26 | C6h 7 0 1le-12
27 |* Q@ = nand(Dn, Qn)
28 |M10a 11 6 2 2 P3306M
29 | M10b 11 12 2 2 P3306M
30 | M10c 11 6 13 13 N3306M
31 | M10d 13 12 0 O N3306M
32 |R10e 10 11 0.1
33 | C10f 11 0 1le-12
34 |* nand(Dn, Wr, CLK)
35 | M14a 15 6 2 2 P3306M
36 |M14b 15 5 2 2 P3306M
37 | M14c 15 4 2 2 P3306M
38 | M14d 15 6 16 16 N3306M
39 | M1l4e 16 5 17 17 N3306M
40 | M14f 17 4 0 0 N3306M
41 |R14g 14 15 0.1
42 |* Qn = nand(Q, nand(Dn, Wr, CLK))
43 | M12a 18 10 2 2 P3306M
44 | M12b 18 14 2 2 P3306M
45 | M12c 18 10 19 19 N3306M
46 | M12d 19 14 0 O N3306M
47 |R12e 12 18 0.1
48 | C12f 18 0 1e-12

129

49 | .TRAN 1e-09 1e-06 0 1e-09
50 | .PRINT TRAN V(10) V(12)
51 | .PROBE

52 | .END

F.5 JK flip-flop

Circuit

.MODEL N3306M NMOS VTO0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233

+ CGS0=28E-12 CGD0O=3E-12 CBD=35E-12 PB=1

.MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145

+ CGS0=28E-12 CGD0O=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

6 |vdd 1 0 DC 3.3

7 1Ri 2 1 0.1

8| J =1, 0, 1, 1, 0

9 |V3 3 0 PWL(O 3.3 2e-07 3.3 2e-07 0O 4e-07 0 4e-07 3.3 8e-07 3.3 8e-07 O
10 |+ 1e-06 0)

11 |[* K =0, 1, 1, 1, 0

12 |v4 4 0 PWL(O O 2e-07 0 2e-07 3.3 8e-07 3.3 8e-07 0 1e-06 0)

13 |* CLK = 1, 0, &, O, 1, O, 1, O, 1, O

14 |v6 5 0 PWL(O 3.3 1e-07 3.3 1e-07 0 2e-07 0 2e-07 3.3 3e-07 3.3 3e-07 O
15 |+ 4e-07 0 4e-07 3.3 5e-07 3.3 5e-07 0 6e-07 0O 6e-07 3.3 7e-07 3.3

16 |+ 7e-07 0 8e-07 0 8e-07 3.3 9e-07 3.3 9e-07 0 1e-06 0)

17 | * nand(J, Qn2, CLK)

18 |M6a 7 3 2 2 P3306M

TUk W N =

19 |M6b 7 8 2 2 P3306M
20 |M6c 7 5 2 2 P3306M
21 |M6d 7 3 9 9 N3306M
22 |Mée 9 8 10 10 N3306M
23 |M6f 10 5 0 O N3306M
24 |R6g 6 7 0.1

25 |* Q1 = nand(Qni, nand(J, Qn2, CLK))
26 | M11a 12 13 2 2 P3306M
27 |M11b 12 6 2 2 P3306M

28 | M11lc 12 13 14 14 N3306M
29 | M11d 14 6 0 0O N3306M

30 |R1le 11 12 0.1

31 C11f 12 0 1le-12

32 | * nand (K, Q2, CLK)

33 | M1ba 16 4 2 2 P3306M

34 | M15b 16 17 2 2 P3306M
35 | M1bc 16 5 2 2 P3306M

36 | M15d 16 4 18 18 N3306M
37 | M15e 18 17 19 19 N3306M
38 | M15f 19 5 0 0 N3306M

39 |R16g 15 16 0.1

40 |* Qnl1 = nand(Q1, nand(K, Q2, CLK))
41 | M13a 20 11 2 2 P3306M
42 | M13b 20 15 2 2 P3306M
43 | M13c 20 11 21 21 N3306M
44 |M13d 21 15 0 0 N3306M
45 |R13e 13 20 0.1

46 | C13f 20 0 1le-12

47 | * CLKn = not (CLK)

48 | M22a 23 5 2 2 P3306M

49 | M22b 23 5 0 0 N3306M
R22c 22 23 0.1

ot Ut

1]1C22d 23 0 1e-12

52 | * nand (Q1, CLKn)

53 | M24a 25 11 2 2 P3306M

54 | M24b 25 22 2 2 P3306M

55 | M24c 25 11 26 26 N3306M

56 | M24d 26 22 0 0 N3306M

57 |R24e 24 25 0.1

58 | * Q2 = nand(Qn2, nand(Ql, CLKn))

130

M17a 27 8 2 2 P3306M

M17b 27 24 2 2 P3306M
M17c 27 8 28 28 N3306M
M17d 28 24 0 O N3306M
R17e 17 27 0.1

C17f 27 0 1le-12

* nand(Qni, CLKn)

M29a 30 13 2 2 P3306M
M29b 30 22 2 2 P3306M
M29c 30 13 31 31 N3306M
M29d 31 22 0 O N3306M
R29e 29 30 0.1

* Qn2 = nand(Q2, nand(Qnl, CLKn))
M8a 32 17 2 2 P3306M

M8b 32 29 2 2 P3306M

M8c 32 17 33 33 N3306M
M8d 33 29 0 0O N3306M

R8e 8 32 0.1

C8f 32 0 le-12

.TRAN 1e-09 1e-06 0 1e-09
.PRINT TRAN V(11) V(13) V(22) V(17) V(8)
.PROBE

.END

F.6 T flip-flop

Y OU R W N

o~ ™

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
34
35
36
37
38
39

Circuit

.MODEL N3306M NMOS VTO0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
+ CGS0=28E-12 CGD0O=3E-12 CBD=35E-12 PB=1

.MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

Vdd 1 0 DC 3.3

Ri 21 0.1

* CLK =1, 0, &, O, 1, 0, 1, O, 1, O

V3 3 0 PWL(0O 3.3 1e-07 3.3 1e-07 0 2e-07 0 2e-07 3.3 3e-07 3.3 3e-07 O
+ 4e-07 0 4e-07 3.3 5e-07 3.3 5e-07 0 6e-07 0 6e-07 3.3 7e-07 3.3
+ 7e-07 0 8e-07 0 8e-07 3.3 9e-07 3.3 9e-07 0 1e-06 0)

* CLKn = not (CLK)

M4a 5 3 2 2 P3306M

M4b 5 3 0 O N3306M

R4c 4 5 0.1

C4d 5 0 1e-12

* En = 0, 1, 1, 1, 1

V6 6 0 PWL(O O 2e-07 O 2e-07 3.3 1e-06 3.3)

* RESn = En

*x T =0, 1, 0, 0, 1

V7 7 0 PWL(O O 2e-07 O 2e-07 3.3 4e-07 3.3 4e-07 0 8e-07 0 8e-07 3.3 1e-06
+ 3.3)

* nand (RESn, T, Qn, CLK, En)

M8a 9 6 2 2 P3306M

M8b 9 7 2 2 P3306M
M8c 9 10 2 2 P3306M
M8d 9 3 2 2 P3306M
M8e 9 6 2 2 P3306M

M8f 9 6 11 11 N3306M
M8g 11 7 12 12 N3306M
M8h 12 10 13 13 N3306M
M8i 13 3 14 14 N3306M
M8j 14 6 0 O N3306M

R8k 8 9 0.1

* QM = nand(QMn, nand(RESn, T, Qn, CLK, En))
M15a 16 17 2 2 P3306M
M15b 16 8 2 2 P3306M
M15c 16 17 18 18 N3306M
M15d 18 8 0 O N3306M

131

40 | R15e 15 16 0.1

41 | C15f 16 0 1le-12

42 | * nand(T, Q, CLK, En)
43 | M19a 20 7 2 2 P3306M

44 | M19b 20 21 2 2 P3306M
45 | M19¢c 20 3 2 2 P3306M

46 | M19d 20 6 2 2 P3306M

47 | M19e 20 7 22 22 N3306M
48 | M19f 22 21 23 23 N3306M
49 | M19g 23 3 24 24 N3306M
M19h 24 6 0 O N3306M
R19i 19 20 0.1

* QMn = nand (RESn, QM, nand(T, Q, CLK, En))
M17a 25 6 2 2 P3306M
M17b 25 15 2 2 P3306M
M17c 25 19 2 2 P3306M
M17d 25 6 26 26 N3306M
M17e 26 15 27 27 N3306M
M17f 27 19 0 0 N3306M
R17g 17 25 0.1

C17h 25 0 le-12

* nand (RESn, QM, CLKn)
62 | M28a 29 6 2 2 P3306M

63 | M28b 29 15 2 2 P3306M
64 | M28c 29 4 2 2 P3306M

65 | M28d 29 6 30 30 N3306M
66 | M28e 30 15 31 31 N3306M
67 | M28f 31 4 0 0 N3306M

68 |R28g 28 29 0.1

69 |* Q = nand(Qn, nand (RESn, QM, CLKn))
70 |M21a 32 10 2 2 P3306M
71 |M21b 32 28 2 2 P3306M
72 | M21c 32 10 33 33 N3306M
73 |M21d 33 28 0 0 N3306M
74 |R21e 21 32 0.1

75 | C21f 32 0 1le-12

76 | * nand (QMn, CLKn)

77 | M34a 35 17 2 2 P3306M
78 |M34b 35 4 2 2 P3306M

79 | M34c 35 17 36 36 N3306M
80 | M34d 36 4 0 0 N3306M

81 |R34e 34 35 0.1

82 |[* Qn = nand(RESn, Q, nand(QMn, CLKn))
83 | M10a 37 6 2 2 P3306M

84 | M10b 37 21 2 2 P3306M
85 | M10c 37 34 2 2 P3306M
86 | M10d 37 6 38 38 N3306M
87 | M10e 38 21 39 39 N3306M
88 | M10f 39 34 0 O N3306M
89 |R10g 10 37 0.1

90 | C10h 37 0 1le-12

91 .TRAN 1e-09 1e-06 0 1e-09
92 | .PRINT TRAN V(4) V(6) V(15) V(17) V(21) V(10)
93 .PROBE

94 .END

ot Ot Ot Ut Ot Ut
AR DO RO

Ut Ut
- >

SO Ut
— O O

132

Appendix G

VLSI

G.1 Half adder

I | setup {

2 dt = tmax/1000;

3 tmax = 4e-7;

4 U = 3.3;

5 Ri = 0.120792;

6 Ropen = 0.601435;
7 Rclosed = 1el10;

8 C = 3.851953e-9;

9 |}

10

11 | graph {

12 format = pdf;

13 height = 360;

14 labels = ucA, ucF;
15 show = ucA, ucF;
16 width = 640;

17 xbase = 1e8;

18 xfmt = "%2.01";

19 xmult = "10°{-8} [s]";
20 xmultx = 1.09;
21 xmulty = -0.09;
22 xtics = 0, tmax/8, T7*xtmax/8;
23 yspace = 0.02;
24 |}
25
26 |x = 1;
27 |y = 13

28
29 | //not (x)

30 |Rp1B = x*Rclosed+(1-x)*Ropen;
31 |Rn1B = x*Ropen+(1-x)*Rclosed;
32 |iB = (U-uc1B-ucB)/Ri;

33 |uciB’ = (iB-uc1B/Rp1B)/C &0;
34 |ucB’ = (iB-ucB*(1/Rni1B))/C &U;
35
36 | //nand (not(x), y)

37 |iniD = 1 if ucB>=U/2;

38 |Rp1D = inlD*Rclosed+(1-inlD)*Ropen;
39 |Rn1D = inlD*Ropen+(1-iniD)*Rclosed;
40 |Rp2D = y*Rclosed+(1-y)*Ropen;

11 |Rn2D = y*Ropen+(l-y)*Rclosed;

42 |iD = (U-ucD2-uc1D-uc2D)/Ri;

43 |ucD2’ = (iD-ucD2*(1/Rp1D+1/Rp2D))/(2%C) &0;
44 |uciD’ = (iD-uc1D/RniD)/C &U/2;
15 |uc2D’ = (iD-uc2D/Rn2D)/C &U/2;

46 |ucD = uclD+uc2D;

133

-~

18 | //not (y)

49 |Rp1C = y*Rclosed+(1-y)*Ropen;
50 |Rn1C = y*Ropen+(l1-y)*Rclosed;
51 |iC = (U-uc1C-ucC)/Ri;

52 |uc1C’ = (iC-ucl1C/Rp1C)/C &0;
53 |ucC’ = (iC-ucC*(1/RniC))/C &U;
54

55 | //nand (x, not(y))

56 | Rp1E = x*Rclosed+(1-x)*Ropen;
57 |RnlE = x*Ropen+(1-x)*Rclosed;
58 | in2E = 1 if ucC>=U/2;

59 | Rp2E = in2E*Rclosed+(1-in2E)*Ropen;
0 |Rn2E = in2E*Ropen+(1-in2E)*Rclosed;
61 |iE = (U-ucE2-uclE-uc2E)/Ri;

62 |ucE2’ = (iE-ucE2*(1/Rp1E+1/Rp2E))/(2*C) &0;
63 |uclE’ = (iE-uclE/RnlE)/C &U/2;

64 |uc2E’ = (iE-uc2E/Rn2E)/C &U/2;

65 |ucE = uclE+uc2E;

67 | //nand (nand(not(x), y), nand(x, not(y)))
68 | in1lA = 1 if ucD>=U/2;

69 |RplA = inlA*Rclosed+(1-inl1A)*Ropen;

70 |Rn1A = inlA*Ropen+(1-inlA)*Rclosed;

71 | in2A = 1 if ucE>=U/2;

72 | Rp2A = in2A*Rclosed+(1-in2A)*Ropen;

73 |Rn2A = in2A*Ropen+(1-in2A)*Rclosed;

74 |iA = (U-ucA2-uclA-uc2A)/Ri;

75 |ucA2’ = (iA-ucA2*x(1/RplA+1/Rp2A))/(2%C) &U;
76 |uclA’ = (iA-uclA/Rn1lA)/C &0;
77 |uc2A’ = (iA-uc2A/Rn2A)/C &0;

78 |ucA = uclA+uc2i;

79 | result = 1 if ucA>=U/2;
80
81 | //nand(x, y)

82 |Rp1G = x*Rclosed+(1-x)*Ropen;
83 |RnlG = x*Ropen+(l-x)*Rclosed;
84 | Rp2G = y*Rclosed+(1-y)*Ropen;
85 | Rn2G = y*Ropen+(l-y)*Rclosed;
86 | 1G = (U-ucG2-uclG-uc2G)/Ri;

87 |ucG2’ = (iG-ucG2*(1/Rp1G+1/Rp2G))/(2*C) &O;
88 |ucl1lG’ = (iG-ucl1G/Rni1G)/C &U/2;
89 |uc2G’ = (iG-uc2G/Rn2G)/C &U/2;

90 | ucG = uclG+uc2G;
91
92 | //not (nand(x, y))

93 | inlF = 1 if ucG>=U/2;

94 | RplF = inlF*Rclosed+(1-inl1F)*Ropen;
95 |RnilF = inlF*Ropen+(1-inlF)*Rclosed;
96 | iF = (U-ucl1F-ucF)/Ri;

97 |uclF’ = (iF-uclF/RplF)/C &U;

98 |ucF’ = (iF-ucF#*(1/RnlF))/C &0;

99 | carry = 1 if ucF>=U/2;

G.2 Full adder

I | setup {

2 dt = tmax/1000;

3 tmax = 4de-7;

1 U = 3.3;

5 Ri = 0.120792;

6 Ropen = 0.601435;
7 Rclosed = 1e10;

8 C = 3.851953e-9;
9 }

134

1
12

14
15
16
17
18
19
20

49

ot
W N = O

~

v Ot Ot Ut Ot C

ot

-3

NN

D Ot W N =

R

-

graph {
format = pdf;
height = 360;
labels = ucA, ucL;
show = ucA, uclL;
width = 640;
xbase = 1e8;
xfmt = "%2.01";
xmult = "10°{-8} [s]";
xmultx = 1.09;
xmulty = -0.09;
xtics = 0, tmax/8, 7*tmax/8;
yspace = 0.02;
}
x = 1;
y = 0;
cO = 1;

//nand (x, y)

Rp1B
Rn1B
Rp2B
Rn2B
iB =
ucB2’
uclB”’
uc2B’
ucB =

//nor
iniC
RpiC
RniC
Rp2C
Rn2C
iCc =
uclcC’
uc2C’
ucC’

= x*Rclosed+(1-x)*Ropen;

= x*Ropen+(1-x)*Rclosed;

= y*Rclosed+(1-y)*Ropen;

= y*Ropen+(1-y)*Rclosed;
(U-ucB2-uc1B-uc2B)/Ri;

= (iB-ucB2*(1/Rp1B+1/Rp2B))/(2%C) &O0;
= (iB-uc1B/Rni1B)/C &U/2;

= (iB-uc2B/Rn2B)/C &U/2;

uclB+uc?2B;

(nand(x, y), c0)

= 1 if ucB>=U/2;

= inlC*Rclosed+(1-inl1C)*Ropen;

= iniC*Ropen+(1-iniC)*Rclosed;

= cO*Rclosed+(1-cO)*Ropen;

= cO*Ropen+(1-cO)*Rclosed;
(U-uc1C-uc2C-ucC)/Ri;

= (iC-uc1C/RplC)/C &U/2;

= (iC-uc2C/Rp2C)/C &U/2;

= (iC-ucC*(1/Rn1C+1/Rn2C))/(2*C) &O0;

//nand (y, c0)

Rp1D
Rn1D
Rp2D
Rn2D
iD =
ucD2’
uclD’
uc2D”’
uch =

//nor
inlE
RplE
RnilE
Rp2E
Rn2E
iE =
uclE’
uc2E’
uckE’

= y*Rclosed+(1-y)*Ropen;

= y*Ropen+(l-y)*Rclosed;

= cO*Rclosed+(1-c0)*Ropen;

= cO*Ropen+(1-cO)*Rclosed;
(U-ucD2-uciD-uc2D)/Ri;

= (iD-ucD2*(1/Rp1D+1/Rp2D))/(2%C) &O0;
= (iD-uc1D/Rn1D)/C &U/2;

= (iD-uc2D/Rn2D)/C &U/2;

uclD+uc2D;

(nand(y, c0), x)

= 1 if ucD>=U/2;

= inlE*Rclosed+(1-inlE)*Ropen;

= inlE*Ropen+(1-inlE)*Rclosed;

= x*Rclosed+(1-x)*Ropen;

= x*Ropen+(1-x)*Rclosed;
(U-uclE-uc2E-ucE)/Ri;

= (iE-uclE/RplE)/C &U/2;

= (iE-uc2E/Rp2E)/C &U/2;

= (iE-ucE*(1/RnlE+1/Rn2E))/(2*C) &O0;

//nand (x, cO0)

RplF
RnilF
Rp2F

= x*Rclosed+(1-x)*Ropen;
= x*Ropen+(1-x)*Rclosed;
= cO*Rclosed+(1-cO)*Ropen;

135

78
79
80
81
82
83

Rn2F
iF =
ucF2’
uclF’
uc2F’
ucF =

//nor
inlG
Rp1G
RnilG
Rp2G
Rn2G
iG =
uclG’
uc2G’
ucG’

//nor
RplH
RnlH
Rp2H
Rn2H
Rp3H
Rn3H
iH =
uclH’
uc2H’
uc3H’
ucH’

//nor
//nor
inlA
RplA
Rn1A
in2A
Rp2A
Rn2A
in3A
Rp3A
Rn3A
in4A
Rp4A
Rn4A
iA =
uclA’
uc2A’
uc3A’
uc4A’
uch’

= cO*Ropen+(1-cO)*Rclosed;
(U-ucF2-uci1F-uc2F)/Ri;

= (iF-ucF2*(1/RplF+1/Rp2F))/(2%C) &0;
= (iF-ucl1F/Rni1F)/C &U/2;

= (iF-uc2F/Rn2F)/C &U/2;

uclF+uc2F;

(nand (x, c0), y)
= 1 if ucF>=U/2;
= inlG*Rclosed+(1-ini1G)*Ropen;
= in1G*Ropen+(1-inl1G)*Rclosed;
= y*Rclosed+(1-y)*Ropen;
= y*Ropen+(1-y)*Rclosed;
(U-uc1G-uc2G-ucG)/Ri;
= (iG-uc1G/Rpl1G)/C &U/2;
= (iG-uc2G/Rp2G)/C &U/2;
= (iG-ucG*(1/Rn1G+1/Rn2G))/(2%C) &O0;

(x, y, c0)
= x*Rclosed+(1-x)*Ropen;
= x*xRopen+(1-x)*Rclosed;
= y*Rclosed+(1-y)*Ropen;
= y*xRopen+(1-y)*Rclosed;
= cO*Rclosed+(1-cO0)*Ropen;
= cO*Ropen+(1-cO)*Rclosed;
(U-uc1lH-uc2H-uc3H-ucH) /Ri;
= (iH-uc1H/Rp1lH)/C &O0;
= (iH-uc2H/Rp2H)/C &0;
= (iH-uc3H/Rp3H)/C &O0;
= (iH-ucH*(1/Rn1H+1/Rn2H+1/Rn3H))/(3%C) &U;

(nor (nand(x, y), c0), nor(mnand(y, cO), x), nor(nand(x,
(x, y, c0))
= 1 if ucC>=U/2;
= inlA*Rclosed+(1-inlA)*Ropen;
= inlA*Ropen+(1-inlA)*Rclosed;
= 1 if ucE>=U/2;
= in2A*Rclosed+(1-in2A)*Ropen;
= in2A*Ropen+(1-in2A)*Rclosed;
=1 if ucG>=U/2;
= in3A*Rclosed+(1-in3A)*Ropen;
= in3A*Ropen+(1-in3A)*Rclosed;
= 1 if ucH>=U/2;
= in4A*Rclosed+(1-in4A)*Ropen;
= in4A*Ropen+(1-in4A)*Rclosed;
(U-uclA-uc2A-uc3A-uc4A-uchA)/Ri;
= (iA-uclA/RplA)/C &U/4;
= (iA-uc2A/Rp2A)/C &U/4;
= (iA-uc3A/Rp3A)/C &U/4;
= (iA-uc4A/Rp4A)/C &U/4;
= (iA-ucA*(1/Rn1A+1/Rn2A+1/Rn3A+1/RndA))/(4xC) &0;

result = 1 if ucA>=U/2;

//nan
RpilI
RnilI
Rp2I
Rn2I
il =
ucl?2’
uclI’
uc2Il’
ucl =

//nan
Rp1J
Rni1lJ
Rp2J

d(x, y)
= x*Rclosed+(1-x)*Ropen;
= x*xRopen+(1-x)*Rclosed;
= y*Rclosed+(1-y)*Ropen;
= y*Ropen+(1-y)*Rclosed;
(U-ucI2-uclI-uc2I)/Ri;
= (iI-ucI2*(1/RplI+1/Rp2I))/(2%C) &0;
= (iI-ucl1I/Rnl1I)/C &U/2;
= (iI-uc2I/Rn2I)/C &U/2;
uclI+uc2l;

d(x, c0)

= x*Rclosed+(1-x)*Ropen;

= x*xRopen+(1-x)*Rclosed;

= cO*Rclosed+(1-cO)*Ropen;

136

c0),

y),

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

Rn2J
iJ =
ucJ2’
uclJ’
uc2J’
ucJ =

cO*Ropen+(1-cO)*Rclosed;

(U-ucJ2-uclJ-uc2J)/Ri;

= (iJ-ucJ2%(1/Rp1J+1/Rp2J))/(2%C) &0;
= (iJ-uc1J/Rn1J)/C &U/2;

= (iJ-uc2J/Rn2J)/C &U/2;

uclJ+uc2J;

//nand (y, c0)

Rp1K
Rni1K
Rp2K
Rn2K
iK =
uck2’
uclk’
uc2K’
uck =

y*Rclosed+(1-y)*Ropen;
y*Ropen+(1-y)*Rclosed;
cO*Rclosed+(1-c0O)*Ropen;
cO*Ropen+(1-cO)*Rclosed;

(U-ucK2-uc1K-uc2K)/Ri;

= (iK-ucK2*(1/Rp1K+1/Rp2K))/(2*C) &0;
= (iK-uc1K/RnlK)/C &U/2;

= (iK-uc2K/Rn2K)/C &U/2;

uclK+uc2K;

//nand (nand(x, y), nand(x, c0), nand(y, c0))

iniL
RpilL
RniL
in2L
Rp2L
Rn2L
in3L
Rp3L
Rn3L
iL =
ucL2’
uclL’
uc2L’
uc3L’
uclL =
carry

1 if ucI>=U/2;
iniL*Rclosed+(1-inlL)*Ropen;
iniL*Ropen+(1-iniL)*Rclosed;
1 if ucJ>=U/2;
in2L*Rclosed+(1-in2L)*Ropen;
in2L*Ropen+(1-in2L)*Rclosed;
1 if uck>=U/2;
in3L*Rclosed+(1-in3L)*Ropen;
in3L*Ropen+(1-in3L)*Rclosed;

(U-ucL2-uciL-uc2L-uc3L)/Ri;

= (iL-ucL2*(1/Rp1L+1/Rp2L+1/Rp3L))/(3*C) &U;
= (iL-ucl1lL/RniL)/C &0;

= (iL-uc2L/Rn2L)/C &O0;

= (iL-uc3L/Rn3L)/C &0;

uclL+uc2L+uc3L;

= 1 if ucL>=U/2;

137

Appendix H

VLSI (SPICE)

H.1 Half adder

[

Y oUW

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
34
35
36

37

39
40
41
42
43
44
46

Circuit

.MODEL N3306M
+ CGS0=28E-12
.MODEL P3306M
+ CGS0=28E-12

NMOS VTO0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
CGD0O=3E-12 CBD=35E-12 PB=1

PMOS VTO0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
CGD0O=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3

Vdd 1 0 DC 3.3

Ri 2 1 0.1

* x = 1

V3 3 0 PWL(O 3.3 4e-07 3.3)
* y = 1

V4 4 0 PWL(O 3.3 4e-07 3.3)
* not (x)

M5a 6 3 2 2 P3306M

Mbb 6 3 0 O N3306M

R6c 5 6 0.1

* nand (not (x), y)

M7a 8 5 2 2 P3306M

M7b 8 4 2 2 P3306M
M7c 8 5 9 9 N3306M
M7d 9 4 0 O N3306M
R7e 7 8 0.1

* not (y)

M10a 11 4 2 2 P3306M
M10b 11 4 0 O N3306M
R10c 10 11 0.1

* nand (x, not(y))

M12a 13 3 2 2 P3306M
M12b 13 10 2 2 P3306M
M12c 13 3 14 14 N3306M
M12d 14 10 O O N3306M
R12e 12 13 0.1

* result = nand(nand(not(x), y),
M15a 16 7 2 2 P3306M
M15b 16 12 2 2 P3306M
M15c 16 7 17 17 N3306M
M15d 17 12 0 O N3306M
R15e 15 16 0.1

C15f 16 0 1le-12

* nand (x, y)

M18a 19 3 2 2 P3306M
M18b 19 4 2 2 P3306M
M18c 19 3 20 20 N3306M
M18d 20 4 0 O N3306M
R18e 18 19 0.1

* carry = not(mnand(x, y))
M21a 22 18 2 2 P3306M

nand (x,

139

not (y)))

M21b 22 18 0 0 N3306M
R21c 21 22 0.1

49 | C21d 22 0 1le-12
50 .TRAN 4e-10 4e-07 0 4e-10
51 | .PRINT TRAN V(15) V(21)
52 .PROBE
53 .END
H.2 Full adder
1 | Circuit
2 .MODEL N3306M NMOS VT0=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
3 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1
4 .MODEL P3306M PMOS VT0=-2.875 RS=5.227 RD=7.524 IS=1E-15 KP=.145
5 |+ CGS0=28E-12 CGD0=3E-12 CBD=35E-12 PB=1 LAMBDA=6.67E-3
6 |vdd 1 0 DC 3.3
7 1Ri 21 0.1
8 |*x x =1
9 |vV3 3 0 PWL(O 3.3 4e-07 3.3)
10 |*x y =0
11 | V4 4 0 PWL(O O 4e-07 0)
12 |* cO = 1
13 |V6 5 0 PWL(O 3.3 4e-07 3.3)
14 | * nand(x, y)
15 |M6a 7 3 2 2 P3306M
16 |M6b 7 4 2 2 P3306M
17 |M6c 7 3 8 8 N3306M
18 |M6d 8 4 0 0O N3306M
19 |R6e 6 7 0.1
20 | * nor(mand(x, y), cO0)
21 | M9a 10 6 2 2 P3306M
22 |M9b 11 5 10 10 P3306M
23 |M9¢c 11 6 0 0O N3306M
24 |M9d 11 5 0 0 N3306M
25 |R9e 9 11 0.1
26 | * nand(y, cO)
27 | M12a 13 4 2 2 P3306M
28 | M12b 13 5 2 2 P3306M
29 | M12c 13 4 14 14 N3306M
30 | M12d 14 5 0 0O N3306M
31 |R12e 12 13 0.1
32 | * nor(nand(y, c0), x)
33 | Miba 16 12 2 2 P3306M
34 | M15b 17 3 16 16 P3306M
35 | M1bc 17 12 0 O N3306M
36 | M15d 17 3 0 0 N3306M
37 |R15e 15 17 0.1
38 | * nand(x, cO0)
39 | M18a 19 3 2 2 P3306M
40 | M18b 19 5 2 2 P3306M
41 | M18c 19 3 20 20 N3306M
42 | M18d 20 5 0 0 N3306M
43 |R18e 18 19 0.1
44 | * nor (nand(x, c0), y)
45 | M21a 22 18 2 2 P3306M
46 | M21b 23 4 22 22 P3306M
47 | M21c 23 18 0 0 N3306M
48 | M21d 23 4 0 0 N3306M
49 | R21e 21 23 0.1
50 [* nor(x, y, c0)
51 M24a 25 3 2 2 P3306M
52 | M24b 26 4 25 25 P3306M
53 | M24c 27 5 26 26 P3306M
54 | M24d 27 3 0 0 N3306M
55 | M24e 27 4 0 0O N3306M

140

56
57
58
59
60

62

76

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

M24f 27 5 0 0O N3306M
R24g 24 27 0.1

* result = nor(nor(nand(x, y), c0),
* y), nor(x, y, c0))
M28a 29 9 2 2 P3306M
M28b 30 15 29 29 P3306M
M28c 31 21 30 30 P3306M
M28d 32 24 31 31 P3306M
M28e 32 9 0 O N3306M
M28f 32 15 0 O N3306M
M28g 32 21 0 O N3306M
M28h 32 24 0 0 N3306M
R28i 28 32 0.1

€283 32 0 le-12

* nand (x, y)

M33a 34 3 2 2 P3306M
M33b 34 4 2 2 P3306M
M33c 34 3 35 35 N3306M
M33d 35 4 0 O N3306M
R33e 33 34 0.1

* nand(x, cO0)

M36a 37 3 2 2 P3306M
M36b 37 5 2 2 P3306M
M36c 37 3 38 38 N3306M
M36d 38 5 0 0 N3306M
R36e 36 37 0.1

* nand(y, c0)

M39a 40 4 2 2 P3306M
M39b 40 5 2 2 P3306M
M39c 40 4 41 41 N3306M
M39d 41 5 0 0O N3306M
R39e 39 40 0.1

* carry = nand(nand(x, y), nand(x,
M42a 43 33 2 2 P3306M
M42b 43 36 2 2 P3306M
M42c 43 39 2 2 P3306M
M42d 43 33 44 44 N3306M
M42e 44 36 45 45 N3306M
M42f 45 39 0 0 N3306M
R42g 42 43 0.1

C42h 43 0 1le-12

.TRAN 4e-10 4e-07 0 4e-10
.PRINT TRAN V(28) V(42)
.PROBE

.END

nor (nand (y,

c0),

nand (y,

c0),

c0))

x),

nor (nand (x,

c0),

141

Index

A
accuracy, 17
adder, 68
full, 68
half, 68
transient response, 68, 70
adjacency matrix, 78
arithmetic
arbitrary precision, 17
double precision, 17
automatic transformation, 7
division, 13
example, 13
exponential, 12
hyperbolic, 10
inverse hyperbolic, 11
inverse trigonometric, 9
logarithmic, 12
square root, 12
trigonometric, 8

B
Booth’s algorithm, 73

C
capacitance, 27
capacitor reactance, 27
Capacitor Substitution Method, 49
capacity
compensating, 30
parasitic, 29
carry
generate, 69
propagate, 69
propagation, 69, 70
Carry Look-ahead, 69
Carry Look-ahead Unit, 70
characteristics
accuracy, 17
MTSM, 17
speed of calculation, 18

circle test, 6
circuits
electric, 25
electronic, 45
CLA, 69
CLU, 70
CMOS, 47
flip-flops, 65
D, 65
JK, 67
T, 75
inverter, 49
latches, 61
D, 63
JK, 64
RS, 61
multiplexer, 75
NAND, 53
NOR, 56
XOR, 58
coil reactance, 27
compensating capacity, 30
complement, 74
CSM, 49

D

D flip-flop, 65

D latch, 63

D shift register, 73

definite integral, 22
differential-algebraic equations, 5
diode, 45

division, 13

E

elimination of algebraic operations, 29

equations
differential-algebraic, 5
linear differential, 40
Euler’s number, 7

143

F method

FOS, 48 Fuler, 5
Fourier coefficients, 23 implicit MTSM, 19
full adder, 68 MTSM, 7
function practical usage, 21
arccos, 9 principle of calculation, 20
arccot, 10 Newton—Raphson, 45, 47
arcsin, 9 Runge-Kutta, 6
arctan, 10 symbolic-complex, 27
argcosh, 11 symbolic-phasor, 25
argcoth, 12 methods
argsinh, 11 numerical, 5
argtanh, 12 parallel, 38
cos, 8 symbolic, 25, 27
cosh, 10 minimal form, 14, 15
cot, 9 multiplexer, 75
coth, 11 multiplier, 73
exponential, 12
In, 12 N
logarithmic, 12 natural logarithm, 12
sin, 8 NMOS, 48
sinh, 10
sqrt, 12 P
tan, 8 parallelization, 38
tanh, 11 generic, 38
functions linear systems, 40

parasitic capacity, 29, 30

hyperbolic, 10
phasor diagrams, 25

inverse hyperbolic, 11

inverse trigonometric, 9 PMOS, 47
trigonometric, 8 R
H RS latch, 61
half adder, 68 S
1 semiconductors, 45
ILA, 74 solution
ILU, 74 iterative, 45
impedance of circuit, 27 numerical, 27, 33, 46
inductance, 27 symbolic, 32
initial-value problem, 5, 6 speed of calculation, 18
Invert Look-ahead, 74 SPICE, 48
Invert Look-ahead Unit, 74 square root, 12
stiff systems, 19
J stopping rule, 19
JK flip-flop, 67
JK latch, 64 T
T flip-flop, 75
M telegraph line, 31
mechanical oscillator, 21 transformed matrix, 41

144

transformed vector, 41

transient response, 30, 31, 34, 68, 70
shortening, 30

transistor, 47
NMOS, 51
PMOS, 51

two’s complement, 74

v
VLSI, 48, 61

145

	Introduction
	Motivation
	Aims
	Overview of the work

	Differential–Algebraic Equations
	Numerical methods
	Euler method
	Runge–Kutta methods
	Modern Taylor Series Method

	Automatic transformation
	Trigonometric functions
	Inverse trigonometric functions
	Hyperbolic functions
	Inverse hyperbolic functions
	Exponential function
	Natural logarithm
	Square root
	Division
	Example

	Transformation into basic operations
	Transformation into the minimal form
	Minimal form

	Characteristics of MTSM
	Accuracy of calculation
	Speed of calculation
	Stiff systems
	Implicit form of MTSM

	Stopping rule
	Principle of calculating MTSM terms
	Practical usage
	Mechanical oscillator
	Calculation of a definite integral
	Fourier coefficients

	Solving Electric Circuits
	Phasor diagrams
	Serial RLC circuit
	Serial-parallel circuits

	Symbolic-complex method
	Numerical solution
	Elimination of algebraic operations
	Shortening the transient response

	Telegraph line
	Symbolic solution
	Numerical solution
	Dependency of output voltage on input voltage

	Parallel methods
	Generic parallelization
	Acceleration for linear ODEs

	Solving Electronic Circuits
	Semiconductors
	Diode
	Transistor

	CMOS
	Approaches to VLSI simulation
	SPICE
	FOS

	Capacitor Substitution Method
	CMOS inverter
	CMOS NAND
	CMOS NOR
	XOR

	VLSI
	CMOS latches
	RS latch
	D latch
	JK latch

	CMOS flip-flops
	D flip-flop
	JK flip-flop

	Adder
	Half adder
	Full adder
	Transient response
	CLA adder
	Scale of integration
	Experiments

	Multiplier
	Booth's algorithm
	Multiplier components
	Verification
	Experiments

	Generic CMOS circuits
	Generating ODEs

	Conclusion
	Aims achieved
	Research contribution
	Future research

	List of Publications
	Bibliography
	Appendices
	List of Appendices

	Practical usage
	Circle test
	Stiff system
	Mechanical oscillator
	Definite integral
	Fourier coefficients

	Electric circuits
	Algebraic operations
	Parasitic capacity
	Compensating capacity
	Telegraph line

	Electronic circuits
	Diode
	Inverter
	NAND
	NAND with three inputs
	NOR
	NOR with three inputs
	XOR
	XOR with three inputs

	Electronic circuits (SPICE)
	Inverter
	NAND
	NAND with three inputs
	NOR
	NOR with three inputs
	XOR
	XOR with three inputs

	Latches and flip-flops
	RS latch
	D latch
	JK latch
	D flip-flop
	JK flip-flop
	T flip-flop

	Latches and flip-flops (SPICE)
	RS latch
	D latch
	JK latch
	D flip-flop
	JK flip-flop
	T flip-flop

	VLSI
	Half adder
	Full adder

	VLSI (SPICE)
	Half adder
	Full adder

	Index

