Inductors and capacitors in ES

a) Series inductors

- reactors are used to limit short-circuit currents \rightarrow current limiting reactors
- used in grids up to 35 kV , single-phase ($\mathrm{I}_{\mathrm{n}}>200 \mathrm{~A}$) or three-phase ($\mathrm{I}_{\mathrm{n}}<200 \mathrm{~A}$)
- usually air-cooled (small L, no mag. saturation x leakage, mag. field induced current nearby metal objects)
- L optimization (small - lower voltage drop, higher - SC reduction)
- In fault-free state the inductor can be bypassed by a fuse to reduce a voltage drop.
- the same design in LC filters for harmonics suppression, SVC (TCR)

SVC
 (Static VAr Compensation)

TCR
(Thyristor Controlled Reactor)

$$
\mathrm{R}_{\mathrm{L}} \ll \mathrm{X}_{\mathrm{L}}
$$

Input: $\mathrm{X}_{\mathrm{L} \%}, \mathrm{~S}_{\mathrm{L}}, \mathrm{U}_{\mathrm{n}}, \mathrm{I}_{\mathrm{n}}$
Calculation: $\quad \mathrm{S}_{\mathrm{L}}=\sqrt{3} \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}}$

$$
\begin{aligned}
& X_{L}=\frac{X_{L \%} \cdot U_{n}}{100 \cdot \sqrt{3} \cdot I_{n}}=\frac{X_{L \%} \cdot U_{n}^{2}}{100 \cdot S_{L}} \\
& \Delta \hat{U}_{\mathrm{f}}=\hat{U}_{\mathrm{f} 1}-\hat{U}_{\mathrm{f} 2}=\left(R_{\mathrm{L}}+j \mathrm{X}_{\mathrm{L}}\right) \hat{\mathrm{I}}=\hat{\mathrm{Z}}_{\mathrm{L}} \hat{\mathrm{I}} \\
& \quad\left\langle\hat{\mathrm{Z}}_{\mathrm{Labc}}\right|=\hat{\mathrm{Z}}_{\mathrm{L}} \cdot[\mathrm{E}]-3 \text { ph inductor }
\end{aligned}
$$

\rightarrow self-impedance \hat{Z}_{L}, mutual impedances 0

b) Shunt (parallel) inductors

- in the transmission systems (usually $\mathrm{U}_{\mathrm{N}}>220 \mathrm{kV}$)
- oil cooling, Fe core
- used to compensate capacitive (charging) currents of long OHL for no-load or small loads $\rightarrow \underline{\mathrm{U} \text { control }}$:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{L}}=\frac{\mathrm{U}_{\mathrm{Ln}}}{\sqrt{3} \cdot \mathrm{I}_{\mathrm{Ln}}}=\frac{\mathrm{U}_{\mathrm{Ln}}^{2}}{\mathrm{Q}_{\mathrm{Ln}}} \\
& \left\lfloor\hat{\mathrm{Z}}_{\mathrm{Labc}} \mid=\hat{\mathrm{Z}}_{\mathrm{L}} \cdot[\mathrm{E}]\right.
\end{aligned}
$$

- Q: 15, 30, 55 MVA

Connection in the system:

a) galvanic connection to the line

- Y winding
b) inductor connection to transformer tertiary winding
- lower voltage $\mathrm{U}_{\mathrm{n}} \approx 10 \div 35 \mathrm{kV}$

Kočín 400 kV

c) Neutral point inductors

- used in networks with indirectly earthed neutral point to compensate currents during ground fault (capacitive currents)
- resonance compensation
- for distribution systems (6 to 35 kV)
- reactor is single-phased!, oil cooling
- capacitive current change (network reconfiguration) \rightarrow change in inductance (air gap correction in the magnetic circuit)
 $=$ arc-suppression coil (Peterson coil)
_ $X_{L}=\frac{U_{\text {ph } n}}{I_{\text {Lset }}}$

4 MVAr, 13 kV, Ostrava - Kunčice

d) Series capacitors

- capacitors in ES = capacitor banks
- in series \rightarrow reduce TS line series inductance
- power flow control, voltage drop reduction, dynamic oscillation mitigation
- TCSR (Thyristor Controlled Series Capacitor)

$$
\hat{\mathrm{U}}_{\mathrm{C}}=-\mathrm{j} \frac{1}{\omega \mathrm{C}} \hat{\mathrm{I}}
$$

- device installed on insulated platforms - C under voltage
- during short-circuits and overcurrents there appears overvoltage on the capacitor (very fast protections are used)

Canada 750 kV

e) Shunt capacitors

- used in LV industrial networks (up to 1 kV)
- connection:
a) wye - Y
b) delta - Δ (D)

$$
\begin{array}{ll}
Q_{f}=U_{f} \cdot I_{C}=U_{f}^{2} \omega C_{Y} & Q_{f}=U \cdot I_{C}=U^{2} \omega C_{\Delta} \\
Q=3 U_{f}^{2} \omega C_{Y}=U^{2} \omega C_{Y} & Q=3 U^{2} \omega C_{\Delta}
\end{array}
$$

- with the same reactive power

$$
\mathrm{U}^{2} \omega \mathrm{C}_{\mathrm{Y}}=3 \mathrm{U}^{2} \omega \mathrm{C}_{\Delta} \rightarrow \mathrm{C}_{\mathrm{Y}}=3 \mathrm{C}_{\Delta} \rightarrow \text { rather delta }
$$

\rightarrow power factor improvement, lower power losses, voltage drops

- individual or group compensation could be used
- shunt - also in harmonic filter (mainly MV, or SVC to HV via transformer)

Transformer Concept in CR

- voltages, neutral point grounding, winding connection +D winding

Transformers in ES

DTS 22/0,4 kV (35/0,4 kV)

Industrial ($22 / 6 \mathrm{kV}$)

Construction Issues

- winding material (Al, Cu)
- winding connection (D, Y, Z)
- clock hour number (phasor group) (1-11)
- core material (standard, amorphous) \rightarrow no load losses
- tank (oil, dry)
- cooling (oil, air) - e.g. ONAN, OFAF
- noise
- weight
- voltage levels, ratio
- power

○DTS: 50, 63, 100, 160, 250, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 4000 kVA

- $110 \mathrm{kV} / \mathrm{MV}: 10,16,25,40,50,63 \mathrm{MVA}$
o HV/MV: 66, 200, 250, 350
- parameters ...

a) Two-winding transformers

- winding connection Y, Yn, D, Z, Zn, V

Yzn - distribution TRF MV/LV up to 250 kVA , for unbalanced load Dyn - distribution TRF MV/LV from 400 kVA
Yd - block TRF in power plants, the $3{ }^{\text {rd }}$ harmonic suppression
Yna-d, YNynd - power grid transformer (400, 220, 110 kV)
YNyd - power grid transformer (e.g. 110/23/6,3 kV)

- clock hour number (phasor group)

Sr. No.	Symbol	Windings and terminals	EMF vector diagrams	Equivalent clock method representation
5.	$\begin{aligned} & \text { D y } 1 \\ & -30^{\circ} \end{aligned}$			
6.	$\begin{aligned} & Y d 1 \\ & -30^{\circ} \end{aligned}$			
7.	$\begin{gathered} \text { D y } 11 \\ +30^{\circ} \end{gathered}$			
8.	$\begin{gathered} \text { Y d } 11 \\ +30^{\circ} \end{gathered}$			

- equivalent circuit: T - network

$$
\hat{Z}_{\text {op }}=R_{p}+j X_{\text {op }} \quad \hat{Z}_{\text {os }}=R_{s}+j X_{\text {os }} \quad \hat{Y}_{q}=G_{q}-j B_{q}
$$

- each phase can be considered separately (unbalance is neglected)
- further operational impedance discussed
- values of the parameters are calculated, then verified by two tests
o no-load test - secondary winding open, primary winding supplied by rated voltage, no-load current is flowing (lower than rated current)
o short-circuit test - secondary winding short-circuited, primary winding supplied by short-circuit voltage (lower than rated voltage), so that rated current is flowing

$$
\begin{aligned}
& \Delta \mathrm{P}_{0}(\mathrm{~W}), \mathrm{i}_{0}(\%), \Delta \mathrm{P}_{\mathrm{k}}(\mathrm{~W}), \mathrm{z}_{\mathrm{k}}=\mathrm{u}_{\mathrm{k}}(\%), \mathrm{S}_{\mathrm{n}}(\mathrm{VA}), \mathrm{U}_{\mathrm{n}}(\mathrm{~V}) \\
& \mathrm{u}_{\mathrm{k}} \approx 4 \div 17 \% \text { (increases with TRF power) } \\
& \mathrm{p}_{\mathrm{k}} \approx 0,1 \div 1 \% \text { (decreases with TRF power) } \\
& \mathrm{p}_{0} \approx 0,01 \div 0,1 \% \text { (decreases with TRF power) }
\end{aligned}
$$

- shunt branch:

$$
\begin{aligned}
& g_{q}=\frac{\Delta P_{0}}{S_{n}} \quad y_{q}=\frac{i_{0 \%}}{100} \quad b_{q}=\sqrt{y_{q}^{2}-g_{q}^{2}} \\
& \hat{y}_{q}=\frac{\Delta P_{0}}{S_{n}}-j \sqrt{\left(\frac{i_{0 \%}}{100}\right)^{2}-\left(\frac{\Delta P_{0}}{S_{n}}\right)^{2}}=g_{q}-j \cdot b_{q} \\
& \hat{Y}_{q}=\hat{y}_{q} \frac{S_{n}}{U_{n}^{2}}=\frac{S_{n}}{U_{n}^{2}}\left[\frac{\Delta P_{0}}{S_{n}}-j \sqrt{\left(\frac{i_{0 \%}}{100}\right)^{2}-\left(\frac{\Delta P_{0}}{S_{n}}\right)^{2}}\right]=G_{q}-j \cdot B_{q}
\end{aligned}
$$

- series branch:

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{k}}=\frac{\Delta \mathrm{P}_{\mathrm{k}}}{\mathrm{~S}_{\mathrm{n}}} \quad \mathrm{Z}_{\mathrm{k}}=\frac{\mathrm{u}_{\mathrm{k} \%}}{100} \quad \mathrm{x}_{\mathrm{k}}=\sqrt{\mathrm{z}_{\mathrm{k}}^{2}-\mathrm{r}_{\mathrm{k}}^{2}} \\
& \hat{\mathrm{Z}}_{\mathrm{k}}=\frac{\Delta \mathrm{P}_{\mathrm{k}}}{\mathrm{~S}_{\mathrm{n}}}+\mathrm{j} \sqrt{\left(\frac{\mathrm{u}_{\mathrm{k} \%}}{100}\right)^{2}-\left(\frac{\Delta \mathrm{P}_{\mathrm{k}}}{\mathrm{~S}_{\mathrm{n}}}\right)^{2}}=\mathrm{r}_{\mathrm{k}}+\mathrm{j} \cdot \mathrm{x}_{\mathrm{k}} \\
& \hat{Z}_{\mathrm{k}}=\hat{\mathrm{Z}}_{\mathrm{k}} \frac{\mathrm{U}_{\mathrm{n}}^{2}}{\mathrm{~S}_{\mathrm{n}}}=\frac{\mathrm{U}_{\mathrm{n}}^{2}}{\mathrm{~S}_{\mathrm{n}}}\left[\frac{\Delta \mathrm{P}_{\mathrm{k}}}{\mathrm{~S}_{\mathrm{n}}}+\mathrm{j} \sqrt{\left(\frac{\mathrm{u}_{\mathrm{k} \%}}{100}\right)^{2}-\left(\frac{\Delta \mathrm{P}_{\mathrm{k}}}{\mathrm{~S}_{\mathrm{n}}}\right)^{2}}\right]=\mathrm{R}_{\mathrm{k}}+\mathrm{j} \cdot \mathrm{X}_{\mathrm{k}} \\
& \hat{Z}_{\sigma p s}=\hat{Z}_{\mathrm{k}}=\left(\mathrm{R}_{\mathrm{p}}+\mathrm{R}_{\mathrm{s}}\right)+\mathrm{j}\left(\mathrm{X}_{\sigma p}+\mathrm{X}_{\sigma \mathrm{s}}\right)
\end{aligned}
$$

- we choose $\hat{Z}_{\sigma p}=0,5 \hat{Z}_{\text {ops }}=\hat{Z}_{\sigma s}$
- this division is not physically correct (different leakage flows, different resistances)

Transformer losses and efficiency

$\Delta \mathrm{P}_{0} \approx \mathrm{U}$ - constant during operation
$\Delta \mathrm{P}_{\mathrm{k}} \cong \mathrm{R} \cdot \mathrm{I}^{2} \approx \mathrm{I}^{2}$ - changing during operation

- efficiency $\eta=\frac{P_{\text {out }}}{P_{\text {in }}}=1-\frac{\Delta \mathrm{P}_{0}+\Delta \mathrm{P}_{\mathrm{k}}}{\mathrm{P}_{\text {in }}}$

$$
\begin{aligned}
& \eta= 1-\frac{\Delta \mathrm{P}_{0}+\mathrm{R} \cdot \mathrm{I}^{2}}{\mathrm{U}_{\mathrm{n}} \cdot \mathrm{I} \cdot \cos \varphi}=1-\frac{\Delta \mathrm{P}_{0}}{\mathrm{U}_{\mathrm{n}} \cdot \mathrm{I} \cdot \cos \varphi}-\frac{\mathrm{R} \cdot \mathrm{I}}{\mathrm{U}_{n} \cdot \cos \varphi} \\
& \frac{\mathrm{~d} \mathrm{\eta}}{\mathrm{dI}}=0+\frac{\Delta \mathrm{P}_{0}}{\mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}^{2} \cdot \cos \varphi}-\frac{\mathrm{R}}{\mathrm{U}_{\mathrm{n}} \cdot \cos \varphi}=0 \\
& \frac{\Delta \mathrm{P}_{0}}{\vdots} \frac{\vdots}{\mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}^{2} \cdot \cos \varphi}=\frac{\mathrm{R}}{\mathrm{U}_{\mathrm{n}} \cdot \cos \varphi} \\
& \Delta \mathrm{P}_{0}=\mathrm{RI}^{2}=\Delta \mathrm{P}_{\mathrm{k}}
\end{aligned}
$$

b) Three-winding transformers

- parameters are calculated, then verified by noload and short-circuit measurements (3 shortcircuit tests: 1 winding no-load, 1 short-circuit and 1 supplied):

$$
\begin{aligned}
& \Delta \mathrm{P}_{0}(\mathrm{~W}), \mathrm{i}_{0}(\%), \Delta \mathrm{P}_{\mathrm{k}}(\mathrm{~W}), \mathrm{z}_{\mathrm{K}}=\mathrm{u}_{\mathrm{K}}(\%), \\
& \mathrm{S}_{\mathrm{n}}(\mathrm{VA}), \mathrm{U}_{\mathrm{n}}(\mathrm{~V})
\end{aligned}
$$

- powers needn't be the same: $\mathrm{S}_{\mathrm{Sn}}=\mathrm{S}_{\mathrm{Tn}}=0,5 \cdot \mathrm{~S}_{\mathrm{Pn}}$
- equivalent circuit:

- no-load measurement: related to the primary rated power and rated voltage $S_{\text {Pn }}$ a $U_{\text {PN }}$ (supplied)

$$
\hat{y}_{q}=g_{q}-j \cdot b_{q}=\frac{\Delta P_{0}}{S_{P n}}-j \sqrt{\left(\frac{i_{0 \%}}{100}\right)^{2}-\left(\frac{\Delta P_{0}}{S_{P n}}\right)^{2}}
$$

denominated value (S) - related to UPN

$$
\hat{\mathrm{Y}}_{\mathrm{q}}=\hat{\mathrm{y}}_{\mathrm{q}} \frac{\mathrm{~S}_{\mathrm{P}_{\mathrm{n}}}}{U_{\mathrm{P}_{\mathrm{n}}}^{2}}=\mathrm{G}_{\mathrm{q}}-\mathrm{j} \cdot \mathrm{~B}_{\mathrm{q}}=\frac{\mathrm{S}_{\mathrm{P}_{\mathrm{n}}}}{\mathrm{U}_{\mathrm{P}_{\mathrm{n}}}^{2}}\left[\frac{\Delta \mathrm{P}_{0}}{\mathrm{~S}_{\mathrm{Pn}}}-\mathrm{j} \sqrt{\left(\frac{\mathrm{i}_{0 \%}}{100}\right)^{2}-\left(\frac{\Delta \mathrm{P}_{0}}{\mathrm{~S}_{\mathrm{P}_{\mathrm{n}}}}\right)^{2}}\right]
$$

- short-circuit measurement: (3x, supply - short-circuit - no-load) provided: $\mathrm{S}_{\mathrm{Pn}} \neq \mathrm{S}_{\mathrm{Sn}} \neq \mathrm{S}_{\mathrm{Tn}}$

measurement between	$\mathrm{P}-\mathrm{S}$	$\mathrm{P}-\mathrm{T}$	$\mathrm{S}-\mathrm{T}$
short-circuit losses (W)	$\Delta \mathrm{P}_{\mathrm{kPS}}$	$\Delta \mathrm{P}_{\mathrm{kPT}}$	$\Delta \mathrm{P}_{\mathrm{kST}}$
short-circuit voltage (\%)	$\mathrm{u}_{\mathrm{kPS}}$	$\mathrm{u}_{\mathrm{kPT}}$	$\mathrm{u}_{\mathrm{kST}}$
measurement corresponds to power (VA)	S_{Sn}	S_{Tn}	S_{Tn}

short-circuit tests S - T:
parameter to be found:

$$
\begin{aligned}
& \hat{Z}_{\mathrm{ST}}=\hat{Z}_{\sigma S}+\hat{Z}_{\sigma T}\left(\hat{Z}_{\sigma S}=R_{\mathrm{S}}+j \cdot X_{\sigma S}\right) \text { - recalculated to } U_{\mathrm{PN}} \\
& \hat{\mathrm{Z}}_{\mathrm{ST}}=\hat{\mathrm{Z}}_{\sigma \mathrm{S}}+\hat{Z}_{\sigma T}-\text { recalculated to } U_{\mathrm{PN}}, S_{\mathrm{PN}}
\end{aligned}
$$

$\Delta \mathrm{P}_{\mathrm{k}}$ for $\mathrm{I}_{\mathrm{Tn}} \rightarrow \Delta \mathrm{P}_{\mathrm{kST}}=3 \cdot \mathrm{R}^{+}{ }_{\mathrm{ST}} \cdot \mathrm{I}^{2} \mathrm{Tn}, \quad \mathrm{I}_{\mathrm{Tn}}=\frac{\mathrm{S}_{\mathrm{Tn}}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{Tn}}}$
R^{+}st....resistance of secondary and tertiary windings (related to U_{Tn})

$$
\begin{aligned}
& \mathrm{R}^{+}{ }_{\mathrm{ST}}=\frac{\Delta \mathrm{P}_{\mathrm{kST}}}{\mathrm{~S}_{\mathrm{Tn}}^{2}} \cdot \mathrm{U}_{\mathrm{Tn}}^{2} \\
& \mathrm{R}_{\mathrm{ST}}=\mathrm{R}^{+}{ }_{\mathrm{ST}} \cdot \frac{\mathrm{U}_{\mathrm{Pn}}^{2}}{\mathrm{U}_{\mathrm{Tn}}^{2}} \rightarrow \mathrm{R}_{\mathrm{ST}}=\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{T}}=\frac{\Delta \mathrm{P}_{\mathrm{kST}}}{\mathrm{~S}_{\mathrm{Tn}}^{2}} \cdot \mathrm{U}_{\mathrm{Pn}}^{2}
\end{aligned}
$$

$\mathrm{R}_{\mathrm{S}}\left(\mathrm{R}_{\mathrm{T}}\right)$...resistance of sec. and ter. windings recalculated to primary

$$
\mathrm{r}_{\mathrm{ST}}=\mathrm{R}_{\mathrm{ST}} \cdot \frac{\mathrm{~S}_{\mathrm{PN}}}{\mathrm{U}_{\mathrm{Pn}}^{2}}=\frac{\Delta \mathrm{P}_{\mathrm{kST}}}{\mathrm{~S}_{\mathrm{Tn}}^{2}} \cdot \mathrm{~S}_{\mathrm{Pn}}
$$

- impedance:

$$
\begin{aligned}
& \mathrm{z}_{\mathrm{ST}}=\frac{\mathrm{u}_{\mathrm{kST} \%}}{100} \cdot \frac{\mathrm{~S}_{\mathrm{Pn}}}{\mathrm{~S}_{\mathrm{Tn}}}, \mathrm{Z}_{\mathrm{ST}}=\mathrm{z}_{\mathrm{ST}} \cdot \frac{\mathrm{U}_{\mathrm{Pn}}^{2}}{\mathrm{~S}_{\mathrm{Pn}}}=\frac{\mathrm{u}_{\mathrm{kST} \%}}{100} \cdot \frac{\mathrm{U}_{\mathrm{Pn}}^{2}}{\mathrm{~S}_{\mathrm{Tn}}} \\
& \hat{\mathrm{z}}_{\mathrm{ST}}=\mathrm{r}_{\mathrm{ST}}+\mathrm{j} \cdot \mathrm{x}_{\mathrm{ST}}, \mathrm{x}_{\mathrm{ST}}=\sqrt{\mathrm{z}_{\mathrm{ST}}^{2}-\mathrm{r}_{\mathrm{ST}}^{2}}, \quad \mathrm{x}_{\mathrm{ST}}=\mathrm{x}_{\sigma \mathrm{S}}+\mathrm{x}_{\sigma \mathrm{T}}
\end{aligned}
$$

- based on the derived relations we can write:

P-S:

$$
\begin{aligned}
& \hat{Z}_{\mathrm{PS}}=\mathrm{r}_{\mathrm{PS}}+\mathrm{j} \cdot \mathrm{x}_{\mathrm{PS}}=\frac{\Delta \mathrm{P}_{\mathrm{kPS}}}{\mathrm{~S}_{\mathrm{Sn}}^{2}} \cdot \mathrm{~S}_{\mathrm{Pn}}+\mathrm{j} \cdot \sqrt{\left(\frac{\mathrm{u}_{\mathrm{kPS} \%}}{100} \cdot \frac{\mathrm{~S}_{\mathrm{Pn}}}{\mathrm{~S}_{\mathrm{Sn}}}\right)^{2}-\left(\frac{\Delta \mathrm{P}_{\mathrm{kPS}}}{\mathrm{~S}_{\mathrm{Sn}}^{2}} \cdot \mathrm{~S}_{\mathrm{Pn}}\right)^{2}} \\
& \hat{Z}_{\mathrm{PS}}=R_{\mathrm{PS}}+j \cdot X_{\mathrm{PS}}=\frac{\Delta \mathrm{P}_{\mathrm{kPS}}}{\mathrm{~S}_{\mathrm{Sn}}^{2}} \cdot \mathrm{U}_{\mathrm{Pn}}^{2}+\mathrm{j} \cdot \sqrt{\left(\frac{\mathrm{u}_{\mathrm{kPS} \%}}{100} \cdot \frac{\mathrm{U}_{\mathrm{Pn}}^{2}}{\mathrm{~S}_{\mathrm{Sn}}}\right)^{2}-\left(\frac{\Delta \mathrm{P}_{\mathrm{kPS}}}{\mathrm{~S}_{\mathrm{Sn}}^{2}} \cdot \mathrm{U}_{\mathrm{Pn}}^{2}\right)^{2}}
\end{aligned}
$$

- analogous for $\mathrm{P}-\mathrm{T}$ and $\mathrm{S}-\mathrm{T}$
- leakage reactances for $\mathrm{P}, \mathrm{S}, \mathrm{T}$:

$$
\begin{aligned}
& \hat{Z}_{\sigma \mathrm{P}}=\mathrm{R}_{\mathrm{P}}+\mathrm{j} \cdot \mathrm{X}_{\sigma \mathrm{CP}}=0,5 \cdot\left(\hat{\mathrm{Z}}_{\mathrm{PS}}+\hat{\mathrm{Z}}_{\mathrm{PT}}-\hat{\mathrm{Z}}_{\mathrm{ST}}\right) \\
& \hat{Z}_{\sigma \mathrm{S}}=\mathrm{R}_{\mathrm{S}}+\mathrm{j} \cdot \mathrm{X}_{\sigma \mathrm{S}}=0,5 \cdot\left(\hat{\mathrm{Z}}_{\mathrm{PS}}+\hat{\mathrm{Z}}_{\mathrm{ST}}-\hat{Z}_{\mathrm{PT}}\right) \\
& \hat{Z}_{\sigma \mathrm{T}}=\mathrm{R}_{\mathrm{T}}+\mathrm{j} \cdot \mathrm{X}_{\sigma \mathrm{T}}=0,5 \cdot\left(\hat{\mathrm{Z}}_{\mathrm{PT}}+\hat{Z}_{\mathrm{ST}}-\hat{Z}_{\mathrm{PS}}\right)
\end{aligned}
$$

- knowledge of the series impedances and shunt admittances allows to study voltage and power conditions of 3-winding transformers

Symmetrical system components

Decomposition of unsymmetrical (unbalanced) voltage:

$$
\begin{aligned}
& \hat{\mathrm{U}}_{\mathrm{A}}=\hat{\mathrm{U}}_{\mathrm{A} 1}+\hat{\mathrm{U}}_{\mathrm{A} 2}+\hat{\mathrm{U}}_{\mathrm{A} 0} \\
& \hat{\mathrm{U}}_{\mathrm{B}}=\hat{\mathrm{U}}_{\mathrm{B} 1}+\hat{\mathrm{U}}_{\mathrm{B} 2}+\hat{\mathrm{U}}_{\mathrm{B} 0} \\
& \hat{\mathrm{U}}_{\mathrm{C}}=\hat{\mathrm{U}}_{\mathrm{C} 1}+\hat{\mathrm{U}}_{\mathrm{C} 2}+\hat{\mathrm{U}}_{\mathrm{C} 0}
\end{aligned}
$$

Positive sequence (1), negative (2) and zero (0) sequence.
Hence (reference phase A)

$$
\begin{array}{cl}
\hat{U}_{A}=\hat{U}_{1}+\hat{U}_{2}+\hat{U}_{0} & \hat{\mathrm{I}}_{A}=\hat{\mathrm{I}}_{1}+\hat{\mathrm{I}}_{2}+\hat{\mathrm{I}}_{0} \\
\hat{U}_{B}=\hat{a}^{2} \hat{U}_{1}+\hat{a} \hat{\mathrm{U}}_{2}+\hat{U}_{0} & \hat{\mathrm{I}}_{B}=\hat{a}^{2} \hat{\mathrm{I}}_{1}+\hat{\mathrm{a}} \hat{\mathrm{I}}_{2}+\hat{\mathrm{I}}_{0} \\
\hat{U}_{C}=\hat{a} \hat{\mathrm{U}}_{1}+\hat{a}^{2} \hat{U}_{2}+\hat{U}_{0} & \hat{\mathrm{I}}_{C}=\hat{a}_{1}+\hat{\mathrm{a}}^{2} \hat{\mathrm{I}}_{2}+\hat{\mathrm{I}}_{0} \\
\text { where } \hat{\mathrm{a}}=-\frac{1}{2}+\mathrm{j} \frac{\sqrt{3}}{2}=\mathrm{e}^{\mathrm{j} \frac{2 \pi}{3}} & \hat{a}^{2}=-\frac{1}{2}-\mathrm{j} \frac{\sqrt{3}}{2}=e^{\mathrm{j} \frac{4 \pi}{3}}
\end{array}
$$

Matrix

$$
\left(\mathrm{U}_{\mathrm{ABC}}\right)=\left(\begin{array}{l}
\hat{\mathrm{U}}_{\mathrm{A}} \\
\hat{\mathrm{U}}_{\mathrm{B}} \\
\hat{\mathrm{U}}_{\mathrm{C}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hat{\mathrm{a}}^{2} & \hat{a} & 1 \\
\hat{\mathrm{a}} & \hat{a}^{2} & 1
\end{array}\right)\binom{\hat{\mathrm{U}}_{1}}{\hat{\mathrm{U}}_{2}}=(\mathrm{T})\left(\mathrm{U}_{120}\right)
$$

Inversely

$$
\left(\mathrm{U}_{120}\right)=\left(\begin{array}{l}
\hat{\mathrm{U}}_{1} \\
\hat{\mathrm{U}}_{2} \\
\hat{\mathrm{U}}_{0}
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
1 & \hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} \\
1 & \hat{\mathrm{a}}^{2} & \hat{\mathrm{a}} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{U}}_{\mathrm{A}} \\
\hat{\mathrm{U}}_{\mathrm{B}} \\
\hat{\mathrm{U}}_{\mathrm{C}}
\end{array}\right)=\left(\mathrm{T}^{-1}\right)\left(\mathrm{U}_{\mathrm{ABC}}\right)
$$

Series symmetrical segments in ES

$$
\begin{aligned}
& \left(\begin{array}{l}
\Delta \hat{U}_{\mathrm{A}} \\
\Delta \hat{U}_{\mathrm{B}} \\
\Delta \hat{\mathrm{U}}_{\mathrm{C}}
\end{array}\right)=\left(\begin{array}{ccc}
\hat{\mathrm{Z}} & \hat{Z}^{\prime} & \hat{\mathrm{Z}}^{\prime} \\
\hat{Z}^{\prime} & \hat{\mathrm{Z}} & \hat{Z}^{\prime} \\
\hat{Z}^{\prime} & \hat{\mathrm{Z}}^{\prime} & \hat{\mathrm{Z}}
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{I}}_{\mathrm{A}} \\
\hat{\mathrm{I}}_{\mathrm{B}} \\
\hat{\mathrm{I}}_{\mathrm{C}}
\end{array}\right) \\
& \left(\Delta \mathrm{U}_{\mathrm{ABC}}\right)=\left(\mathrm{Z}_{\mathrm{ABC}}\right)\left(\mathrm{I}_{\mathrm{ABC}}\right) \\
& (\mathrm{T})\left(\Delta \mathrm{U}_{120}\right)=\left(\mathrm{Z}_{\mathrm{ABC}}\right)(\mathrm{T})\left(\mathrm{I}_{120}\right) \\
& \left(\Delta \mathrm{U}_{120}\right)=(\mathrm{T})^{-1}\left(\mathrm{Z}_{\mathrm{ABC}}\right)(\mathrm{T})\left(\mathrm{I}_{120}\right)=\left(\mathrm{Z}_{120}\right)\left(\mathrm{I}_{120}\right) \\
& \left(\mathrm{Z}_{120}\right)=(\mathrm{T})^{-1}\left(\mathrm{Z}_{\mathrm{ABC}}\right)(\mathrm{T}) \\
& \left(\mathrm{Z}_{120}\right)=\left(\begin{array}{ccc}
\hat{\mathrm{Z}}_{1} & 0 & 0 \\
0 & \hat{Z}_{2} & 0 \\
0 & 0 & \hat{\mathrm{Z}}_{0}
\end{array}\right)=\left(\begin{array}{ccc}
\hat{\mathrm{Z}}-\hat{\mathrm{Z}}^{\prime} & 0 & 0 \\
0 & \hat{Z}-\hat{\mathrm{Z}}^{\prime} & 0 \\
0 & 0 & \hat{Z}+2 \hat{Z}^{\prime}
\end{array}\right)
\end{aligned}
$$

Shunt symmetrical segments in ES

$$
\begin{aligned}
& \left(\mathrm{U}_{\mathrm{ABC}}\right)=\left(\mathrm{Z}_{\mathrm{ABC}}\right)\left(\mathrm{I}_{\mathrm{ABC}}\right)+\left(\mathrm{Z}_{\mathrm{N}}\right)\left(\mathrm{I}_{\text {ABC }}\right) \\
& \left(Z_{N}\right)=\left(\begin{array}{lll}
\hat{Z}_{N} & \hat{Z}_{N} & \hat{Z}_{N} \\
\hat{Z}_{N} & \hat{Z}_{N} & \hat{Z}_{N} \\
\hat{Z}_{N} & \hat{Z}_{\mathrm{N}} & \hat{Z}_{\mathrm{N}}
\end{array}\right) \\
& \left(\mathrm{U}_{120}\right)=(\mathrm{T})^{-1}\left(\mathrm{Z}_{\mathrm{ABC}}\right)(\mathrm{T})\left(\mathrm{I}_{120}\right)+(\mathrm{T})^{-1}\left(\mathrm{Z}_{\mathrm{N}}\right)(\mathrm{T})\left(\mathrm{I}_{120}\right) \\
& \left(\mathrm{Z}_{120}\right)=(\mathrm{T})^{-1}\left[\left(\mathrm{Z}_{\mathrm{ABC}}\right)+\left(\mathrm{Z}_{\mathrm{N}}\right)\right](\mathrm{T}) \\
& \left(Z_{120}\right)=\left(\begin{array}{ccc}
\hat{Z}-\hat{Z}^{\prime} & 0 & 0 \\
0 & \hat{Z}-\hat{Z}^{\prime} & 0 \\
0 & 0 & \hat{Z}+2 \hat{Z}^{\prime}+3 Z_{N}
\end{array}\right)
\end{aligned}
$$

Symmetrical components voltages in the symmetrical segments depend only on the corresponding component current and component impedance.

Transformers zero sequence impedances

Series parameters are the same as for the positive sequence, the shunt always need to be determined.
Assumptions:

- Zero sequence voltage supplies the primary winding.
- The relative values are related to UPN and SpN.
- We distinguish free and tied magnetic flows (core x shell TRF).
Z_{0} depends on the winding connection.

a) $\mathbf{Y} /$ any connection

$$
\begin{aligned}
& 3 \mathrm{i}_{0}=0 \\
& \mathrm{z}_{0}=\frac{\mathrm{u}_{0}}{\mathrm{i}_{0}} \rightarrow \infty \\
& \mathrm{z}_{0 \mathrm{p} 0} \rightarrow \infty \\
& \mathrm{z}_{0 \mathrm{ps}} \rightarrow \infty
\end{aligned}
$$

Secondary winding

b) D / any connection

Zero sequence voltage is attached to $\mathrm{D} \rightarrow$ voltage at each phase $\mathrm{u}_{0}-\mathrm{u}_{0}=0 \rightarrow \mathrm{i}_{\mathrm{a}}=\mathrm{i}_{\mathrm{b}}=\mathrm{i}_{\mathrm{c}}=0 \rightarrow \mathrm{i}_{0}=0$

$$
\begin{aligned}
& \mathrm{Z}_{0}=\frac{\mathrm{u}_{0}}{\mathrm{i}_{0}} \rightarrow \infty \\
& \mathrm{Z}_{0 \mathrm{p} 0} \rightarrow \infty \\
& \mathrm{Z}_{0 \mathrm{ps}} \rightarrow \infty
\end{aligned}
$$

c) YN / D

Currents in the primary winding i_{0} induce currents $i_{0}{ }^{\prime}$ in the secondary winding to achieve magnetic balance.
Currents $\mathrm{i}_{0}{ }^{\prime}$ in the secondary winding are short-closed and do not flow further into the grid.
$\hat{\mathrm{z}}_{\mathrm{op} 0}=\hat{\mathrm{z}}_{\mathrm{op}}+\hat{\mathrm{z}}_{\mathrm{q} 0}$
$\hat{\mathrm{z}}_{0}=\frac{\hat{\mathrm{u}}_{0}}{\hat{\mathrm{i}}_{0}}=\hat{\mathrm{z}}_{\mathrm{\sigma p}}+\frac{\hat{\mathrm{z}}_{\text {os }} \cdot \hat{\mathrm{z}}_{\mathrm{q} 0}}{\hat{\mathrm{z}}_{\text {os }}+\hat{\mathrm{z}}_{\mathrm{q} 0}}$
shell

$$
\hat{z}_{q 0}=\hat{y}_{q}^{-1} \gg \hat{\mathrm{z}}_{\text {os }} \rightarrow \hat{\mathrm{z}}_{0} \approx \hat{\mathrm{z}}_{\text {ops }}=\hat{\mathrm{z}}_{1 \mathrm{k}}
$$

3-core

$$
\left|\hat{z}_{\mathrm{q} 0}\right|<\left|\hat{y}_{\mathrm{q}}^{-1}\right| \rightarrow\left|\hat{\mathrm{z}}_{0}\right| \approx(0,7 \div 0,9)\left|\hat{\mathrm{z}}_{\mathrm{Gps}}\right|
$$

d) $\mathbf{Y N} / \mathbf{Y}$

Zero sequence current can't flow through the secondary winding. Current io corresponds to the magnetization current.

$$
\begin{aligned}
& \mathrm{z}_{0 \mathrm{ps}} \rightarrow \infty \\
& \hat{\mathrm{z}}_{0}=\hat{\mathrm{z}}_{0 \mathrm{p} 0}=\hat{\mathrm{z}}_{\sigma \mathrm{p}}+\hat{\mathrm{z}}_{\mathrm{q} 0} \\
& \text { shell } \\
& \quad \hat{\mathrm{z}}_{\mathrm{q} 0}=\hat{\mathrm{y}}_{\mathrm{q}}^{-1} \rightarrow \mathrm{z}_{0} \rightarrow \infty
\end{aligned}
$$

3-core

$$
\left|\hat{\mathrm{z}}_{\mathrm{q} 0}\right|<\left|\hat{\mathrm{y}}_{\mathrm{q}}^{-1}\right| \rightarrow\left|\hat{\mathrm{z}}_{0}\right| \approx(0,3 \div 1)
$$

e)

e) $\mathbf{Y N} / \mathbf{Y N}$

If element with YN or ZN behind TRF \rightarrow points a-b are connected \rightarrow as the positive sequence. If element with Y, Z or D behind TRF $\rightarrow \mathrm{a}-\mathrm{b}$ are disconnected \rightarrow as YN / Y.

Primary winding Secondary winding

f) ZN / any connection

Currents i_{0} induce mag. balance on the core themselves \rightarrow only leakages between the halves of the windings.
$\mathrm{z}_{\text {0ps }} \rightarrow \infty$
$\hat{\mathrm{z}}_{0}=\hat{\mathrm{z}}_{0 \mathrm{p} 0} \approx(0,1 \div 0,3) \hat{\mathrm{z}}_{\text {ops }}$
$\mathrm{r}_{0}=\mathrm{r}_{\mathrm{p}}$

g) impedance in the neutral point

Current flowing through the neutral point is 3 i .
Voltage drop: $\quad \Delta \hat{\mathrm{u}}_{\mathrm{uz}}=\hat{\mathrm{z}}_{\mathrm{u}} \cdot 3 \hat{\mathrm{i}}_{0}=3 \hat{\mathrm{z}}_{\mathrm{u}} \cdot \hat{\mathrm{i}}_{0}$

h) three-winding TRF

System equivalent

Impedance (positive sequence) is given by the nominal voltage and shortcircuit current (power).
Three-phase (symmetrical) short-circuit: $\mathrm{S}_{\mathrm{k}}^{\prime \prime}$ (MVA), $\mathrm{I}_{\mathrm{k}}^{\prime \prime}(\mathrm{kA})$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{k}}^{\prime \prime}=\sqrt{3} \mathrm{U}_{\mathrm{n}} \mathrm{I}_{\mathrm{k}}^{\prime \prime} \\
& \mathrm{Z}_{\mathrm{s}}=\frac{\mathrm{U}_{\mathrm{n}}^{2}}{\mathrm{~S}_{\mathrm{k}}^{\prime \prime}}=\frac{\mathrm{U}_{\mathrm{n}}}{\sqrt{3} \cdot \mathrm{I}_{\mathrm{k}}^{\prime \prime}}
\end{aligned}
$$

CR: $\quad 400 \mathrm{kV} \quad \mathrm{S}_{\mathrm{k}}^{\prime \prime} \approx(6000 \div 30000) \mathrm{MVA} \quad \mathrm{I}_{\mathrm{k}}^{\prime \prime} \approx(9 \div 45) \mathrm{kA}$
$220 \mathrm{kV} \quad \mathrm{S}_{\mathrm{k}}^{\prime \prime} \approx(2000 \div 12000)$ MVA $\quad \mathrm{I}_{\mathrm{k}}^{\prime \prime} \approx(2 \div 30) \mathrm{kA}$
$110 \mathrm{kV} \quad \mathrm{S}_{\mathrm{k}}^{\prime \prime} \approx(100 \mathrm{x} \div 3000) \mathrm{MVA} \quad \mathrm{I}_{\mathrm{k}}^{\prime \prime} \approx(\mathrm{x} \div 15) \mathrm{kA}$

