STEADY STATES CALCULATIONS IN POWER SYSTEMS Current loads

Simple DC line (LV, MV)

Double-wire circuit. Assumption: constant cross-section and resistivity.
Single loads supplied from one side
Standard distribution lines.

a) addition method

It adds voltage drops along the power line sections. (Voltage drops are always in both conductors in the section.)
$k^{\text {th }}$ section

$$
\mathrm{U}_{(\mathrm{k}-1)}-\mathrm{U}_{\mathrm{k}}=\Delta \mathrm{U}_{(\mathrm{k}-1) \mathrm{k}}=2 \frac{\rho}{\mathrm{~S}}\left(\mathrm{l}_{\mathrm{k}}-\mathrm{l}_{(\mathrm{k}-1)}\right) \cdot \mathrm{I}_{(\mathrm{k}-1) \mathrm{k}} \quad\left(\mathrm{~V} ; \Omega \mathrm{m}, \mathrm{~m}^{2}, \mathrm{~m}, \mathrm{~A}\right)
$$

Current in $k^{\text {th }}$ section

$$
I_{(k-1) k}=\sum_{y=k}^{n} I_{y}
$$

Maximum voltage drop

$$
\Delta \mathrm{U}_{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \Delta \mathrm{U}_{(\mathrm{k}-1) \mathrm{k}}=2 \frac{\rho}{\mathrm{~S}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{l}_{\mathrm{k}}-\mathrm{l}_{(\mathrm{k}-1)}\right) \cdot \sum_{\mathrm{y}=\mathrm{k}}^{\mathrm{n}} \mathrm{I}_{\mathrm{y}}
$$

b) superposition method

It adds voltage drops for individual discrete loads:

$$
\Delta \mathrm{U}_{\mathrm{n}}=2 \frac{\rho}{\mathrm{~S}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \mathrm{I}_{\mathrm{k}}
$$

$1_{k} I_{k} \ldots$ current moments to the feeder
Relative voltage drop:

$$
\varepsilon=\frac{\Delta \mathrm{U}}{\mathrm{U}_{\mathrm{n}}}(-; \mathrm{V}, \mathrm{~V})
$$

Note. Losses must be calculated only by means of the addition method!

$$
\begin{aligned}
& \Delta \mathrm{P}_{(\mathrm{k}-1) \mathrm{k}}=2 \frac{\rho}{\mathrm{~S}}\left(\mathrm{l}_{\mathrm{k}}-\mathrm{l}_{(\mathrm{k}-1)}\right) \cdot \mathrm{I}_{(\mathrm{k}-1) \mathrm{k}}^{2} \quad\left(\mathrm{~W} ; \Omega \mathrm{m}, \mathrm{~m}^{2}, \mathrm{~m}, \mathrm{~A}\right) \\
& \Delta \mathrm{P}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \Delta \mathrm{P}_{(\mathrm{k}-1) \mathrm{k}}
\end{aligned}
$$

Single loads supplied from both sides - the same feeders voltages

- Ring grid, higher reliability of supply.
- Two one-feeder lines after a fault. More often also in standard operation mode.
- Calculation of current distribution and voltage drops.

Consider I_{B} as a negative load:

$$
\Delta \mathrm{U}_{\mathrm{AB}}=\mathrm{U}_{\mathrm{A}}-\mathrm{U}_{\mathrm{B}}=0=2 \frac{\rho}{\mathrm{~S}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \mathrm{I}_{\mathrm{k}}-2 \frac{\rho}{\mathrm{~S}} 1 \mathrm{I}_{\mathrm{B}}
$$

Hence (moment theorem)

$$
\mathrm{I}_{\mathrm{B}}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \mathrm{I}_{\mathrm{k}}}{1}
$$

Analogous (current moments to other feeder)

$$
\mathrm{I}_{\mathrm{A}}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(1-\mathrm{l}_{\mathrm{k}}\right) \mathrm{I}_{\mathrm{k}}}{1}
$$

Of course

$$
\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}=\sum_{\mathrm{y}=1}^{\mathrm{n}} \mathrm{I}_{\mathrm{y}}
$$

Current distribution identifies the place with the biggest voltage drop $=$ the place with feeder division \rightarrow split-up into two one-feeder lines.

Single loads supplied from both sides - different feeders voltages
Two different sources, meshed grid.

Superposition:

1) Current distribution with the same voltages.
2) Different voltages and zero loads \rightarrow balancing current

$$
\mathrm{I}_{\mathrm{v}}=\frac{\mathrm{U}_{\mathrm{A}}-\mathrm{U}_{\mathrm{B}}}{2 \frac{\rho}{\mathrm{~S}} 1}
$$

3) Sum of the solutions $1+2$

Further calculation is the same.
Or directly:

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{A}}-\mathrm{U}_{\mathrm{B}}=2 \frac{\rho}{\mathrm{~S}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \mathrm{I}_{\mathrm{k}}-2 \frac{\rho}{\mathrm{~S}} 1 \mathrm{I}_{\mathrm{B}} \\
& \mathrm{I}_{\mathrm{B}}=\frac{2 \frac{\rho}{\mathrm{~S}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \mathrm{I}_{\mathrm{k}}}{2 \frac{\rho}{\mathrm{~S}} 1}-\frac{\mathrm{U}_{\mathrm{A}}-\mathrm{U}_{\mathrm{B}}}{2 \frac{\rho}{\mathrm{~S}} 1}
\end{aligned}
$$

AC-3 phase power lines LV, MV

Series parameters are applied, for LV X $\rightarrow 0$.
3 phase power line MV, 1 load at the end
Symmetrical load $\rightarrow 1$ phase diagram, operational parameters.

Complex voltage drop

$$
\begin{aligned}
\Delta \hat{\mathrm{U}}_{\mathrm{ph}}= & \hat{\mathrm{Z}}_{\mathrm{l}} \hat{\mathrm{I}}=(\mathrm{R}+\mathrm{jX})\left(\mathrm{I}_{\mathrm{re}} \mp \mathrm{jI}_{\mathrm{im}}\right) \mathrm{CAP} \\
\Delta \hat{\mathrm{U}}_{\mathrm{ph}} & =\mathrm{RI}_{\mathrm{re}} \pm \mathrm{XI}_{\mathrm{im}}+\mathrm{j}\left(\mathrm{XI}_{\mathrm{re}} \mp \mathrm{RI}_{\mathrm{im}}\right) \mathrm{IND} \\
& \text { magnitude phase }
\end{aligned}
$$

Phasor diagram (input $\mathrm{U}_{\mathrm{ph} 2}, \mathrm{I}, \varphi_{2}$) (angle v usually small, up to 3°)

Imagin. part neglecting and modifications

$$
\Delta \mathrm{U}_{\mathrm{ph}}=\frac{\mathrm{R} 3 \mathrm{U}_{\mathrm{ph}} \mathrm{I}_{\mathrm{re}} \pm \mathrm{X} 3 \mathrm{U}_{\mathrm{ph}} \mathrm{I}_{\mathrm{im}}}{3 \mathrm{U}_{\mathrm{ph}}}=\frac{\mathrm{RP} \pm \mathrm{XQ}}{3 \mathrm{U}_{\mathrm{ph}}}
$$

Percentage voltage drop

$$
\varepsilon=\frac{\Delta \mathrm{U}_{\mathrm{ph}}}{\mathrm{U}_{\mathrm{ph}}}=\frac{\mathrm{RP} \pm \mathrm{XQ}}{3 \mathrm{U}_{\mathrm{ph}}^{2}}=\frac{\mathrm{RP} \pm \mathrm{XQ}}{\mathrm{U}^{2}}
$$

3 phase active power losses

$$
\begin{aligned}
\Delta \hat{\mathrm{S}} & =3 \Delta \hat{\mathrm{U}}_{\mathrm{ph}} \hat{\mathrm{I}}^{*}=3 \hat{\mathrm{Z}}_{\mathrm{I}} \hat{\mathrm{I}}^{\cdot} \cdot \mathrm{I}^{*}=3 \hat{\mathrm{Z}}_{\mathrm{I}} \mathrm{I}^{2}= \\
& =3(\mathrm{R}+\mathrm{jX}) \mathrm{I}^{2}=3 \mathrm{RI}^{2}+\mathrm{j} 3 \mathrm{XI} \mathrm{I}^{2} \\
\Delta \mathrm{P} & \left.=3 \mathrm{I} \mathrm{I}^{2}=3 \mathrm{I} \mathrm{I}_{\mathrm{re}}^{2}+\mathrm{I}_{\mathrm{im}}^{2}\right) \quad(\mathrm{W} ; \Omega, \mathrm{A})
\end{aligned}
$$

! Even the reactive current causes active power losses!

3 phase MV power line supplied from one side

Constant series impedance

$$
\hat{\mathrm{Z}}_{\mathrm{l}_{1}}=\mathrm{R}_{1}+\mathrm{j} \mathrm{X}_{1} \quad(\Omega / \mathrm{km})
$$

Voltage drop at the end (needn't be the highest one, it depends on load character)

- superposition

$$
\begin{aligned}
& \Delta \hat{\mathrm{U}}_{\mathrm{ph} A \mathrm{n}}=\hat{\mathrm{Z}}_{\mathrm{l}_{1}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \hat{\mathrm{I}}_{\mathrm{k}} \\
& \Delta \hat{\mathrm{U}}_{\mathrm{phAn}}=\hat{\mathrm{Z}}_{\mathrm{l}_{1}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(1_{\mathrm{k}}-1_{(\mathrm{k}-1)}\right) \cdot \sum_{\mathrm{y}=\mathrm{k}}^{\mathrm{n}} \hat{\mathrm{I}}_{\mathrm{y}}
\end{aligned}
$$

After imaginary part neglecting

$$
\begin{aligned}
& \Delta \mathrm{U}_{\mathrm{phAn}} \doteq \mathrm{R}_{1} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{l}_{\mathrm{k}}-\mathrm{l}_{(\mathrm{k}-1)}\right) \cdot \sum_{\mathrm{y}=\mathrm{k}}^{\mathrm{n}} \mathrm{I}_{\mathrm{rek}} \pm \mathrm{X}_{1} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{l}_{\mathrm{k}}-\mathrm{l}_{(\mathrm{k}-1)}\right) \cdot \sum_{\mathrm{y}=\mathrm{k}}^{\mathrm{n}} \mathrm{I}_{\mathrm{imk}} \text { IND } \\
& \Delta \mathrm{U}_{\mathrm{phAP}} \doteq \frac{\mathrm{R}_{1} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{l}_{\mathrm{k}}-1_{(\mathrm{k}-1)}\right) \cdot \sum_{\mathrm{y}=\mathrm{k}}^{\mathrm{n}} \mathrm{P}_{\mathrm{k}} \pm \mathrm{X}_{1} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{l}_{\mathrm{k}}-1_{(\mathrm{k}-1)}\right) \cdot \sum_{\mathrm{y}=\mathrm{k}}^{\mathrm{n}} \mathrm{Q}_{\mathrm{k}} \text { IND }}{3 \mathrm{U}_{\mathrm{ph}}} \text { CAP }
\end{aligned}
$$

Voltage drop up to the point X (not end)

- superposition

$$
\begin{aligned}
& \Delta \hat{\mathrm{U}}_{\mathrm{phAX}}=\hat{\mathrm{Z}}_{\mathrm{l}_{1}} \sum_{\mathrm{k}=1}^{\mathrm{X}} 1_{\mathrm{k}} \hat{\mathrm{I}}_{\mathrm{k}}+\hat{\mathrm{Z}}_{\mathrm{l}_{1}} 1_{\mathrm{AX}} \sum_{\mathrm{k}=\mathrm{X}+1}^{\mathrm{n}} \hat{\mathrm{I}}_{\mathrm{k}} \\
& \Delta \hat{\mathrm{U}}_{\mathrm{phAX}}=\hat{\mathrm{Z}}_{\mathrm{l}_{1}} \sum_{\mathrm{k}=1}^{\mathrm{X}}\left(1_{\mathrm{k}}-\mathrm{l}_{(\mathrm{k}-1)}\right) \cdot \sum_{\mathrm{y}=\mathrm{k}}^{\mathrm{n}} \hat{\mathrm{I}}_{\mathrm{y}}
\end{aligned}
$$

3 phase MV power line supplied from both sides

Calculation as for DC line (feeder is a negative load, zero voltage drop).

$$
\Delta \hat{\mathrm{U}}_{\mathrm{phAB}}=0=\hat{\mathrm{Z}}_{\mathrm{l}_{1}} \sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \hat{\mathrm{I}}_{\mathrm{k}}-\hat{\mathrm{Z}}_{\mathrm{l}_{1}} \cdot \hat{\mathrm{I}}_{\mathrm{B}}
$$

Moment theorems

$$
\hat{I}_{B}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{\mathrm{k}} \hat{\mathrm{I}}_{\mathrm{k}}}{1} \quad \hat{\mathrm{I}}_{\mathrm{A}}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(1-1_{\mathrm{k}}\right) \hat{\mathrm{I}}_{\mathrm{k}}}{1} \quad \hat{\mathrm{I}}_{\mathrm{A}}+\hat{\mathrm{I}}_{\mathrm{B}}=\sum_{\mathrm{y}=1}^{\mathrm{n}} \hat{\mathrm{I}}_{\mathrm{y}}
$$

(In principle it is the current divider for each load.)
Active and reactive current sign change could be in different nodes \rightarrow maximum voltage drop should be checked in all grid points.

Meshed grids MV

Bus voltage method

Grid with n nodes. Set series branch parameters $\hat{\mathrm{Z}}_{\mathrm{km}}$, load currents (bus currents) $\hat{\mathrm{I}}_{\mathrm{k}}$, min. 1 bus voltage $\hat{\mathrm{U}}_{\text {phk }}$ (between the bus and the ground).

Calculation with series admittances

$$
\hat{\mathrm{Y}}_{\mathrm{km}}=\hat{\mathrm{Z}}_{\mathrm{km}}^{-1}=\frac{1}{\mathrm{R}_{\mathrm{km}}+\mathrm{j} \mathrm{X}_{\mathrm{km}}}
$$

Node k

$$
\begin{aligned}
& \hat{\mathrm{I}}_{\mathrm{k}}+\sum_{\substack{\mathrm{m}=1 \\
\mathrm{~m} \neq \mathrm{k}}}^{\mathrm{n}} \hat{\mathrm{I}}_{\mathrm{km}}+\hat{\mathrm{I}}_{\mathrm{k} 0}=0 \\
& \hat{\mathrm{I}}_{\mathrm{k} 0}=\hat{\mathrm{U}}_{\mathrm{phk}} \hat{\mathrm{Y}}_{\mathrm{k} 0}
\end{aligned}
$$

Branches k, m

$$
\hat{I}_{\mathrm{km}}=\left(\hat{\mathrm{U}}_{\mathrm{phk}}-\hat{\mathrm{U}}_{\mathrm{phm}}\right) \hat{\mathrm{Y}}_{\mathrm{km}}
$$

After modifications:

$$
\hat{\mathrm{I}}_{\mathrm{k}}=-\sum_{\substack{\mathrm{m}=1 \\ \mathrm{~m} \neq \mathrm{k}}}^{\mathrm{n}}\left(\hat{\mathrm{U}}_{\mathrm{phk}}-\hat{\mathrm{U}}_{\mathrm{phm}}\right) \hat{Y}_{\mathrm{km}}-\hat{\mathrm{U}}_{\mathrm{phk}} \hat{\mathrm{~K}}_{\mathrm{k} 0}
$$

$$
\hat{I}_{k}=-\hat{U}_{p h k}\left(\sum_{\substack{\mathrm{m}=1 \\ m \neq k}}^{\mathrm{n}} \hat{Y}_{\mathrm{km}}+\hat{Y}_{\mathrm{k} 0}\right)+\sum_{\substack{\mathrm{m}=1 \\ \mathrm{~m} \neq \mathrm{K}}}^{\mathrm{n}} \hat{U}_{\mathrm{pmm}} \hat{Y}_{\mathrm{km}}
$$

Admittance matrix parameters definition:
Bus self-admittance (diagonal element)

$$
\hat{Y}_{(k, k)}=-\sum_{\substack{m=1 \\ m \neq k}}^{n} \hat{Y}_{k m}-\hat{Y}_{k 0}
$$

Between buses admittance (non-diagonal element)

$$
\begin{aligned}
& \hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{~m})}=\hat{\mathrm{Y}}_{(\mathrm{m}, \mathrm{k})}=\hat{\mathrm{Y}}_{\mathrm{km}} \text { for } \mathrm{m} \neq \mathrm{k} \\
& \left(\text { for non-connected buses } \hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{~m})}=0\right. \text {) }
\end{aligned}
$$

Hence

$$
\hat{\mathrm{I}}_{\mathrm{k}}=\sum_{\mathrm{m}=1}^{\mathrm{n}} \hat{\mathrm{Y}}_{(\mathrm{k}, \mathrm{~m})} \hat{\mathrm{U}}_{\mathrm{fm}}
$$

Matrix form

$$
(\hat{\mathrm{I}})=(\hat{\mathrm{Y}})\left(\hat{\mathrm{U}}_{\mathrm{ph}}\right)
$$

Set voltages at buses 1 to $k(x)$, currents at buses $k+1$ to $n(y)$

$$
\left.\left.\binom{\left(\hat{\mathrm{I}}_{\mathrm{x}}\right.}{\hat{\mathrm{I}}_{\mathrm{y}}}\right)=\left(\begin{array}{cc}
\left(\hat{\mathrm{Y}}_{\mathrm{xx}}\right) & \left(\hat{\mathrm{Y}}_{\mathrm{xy}}\right) \\
\left(\hat{\mathrm{Y}}_{\mathrm{xy}}\right)^{\mathrm{T}} & \left(\hat{\mathrm{Y}}_{\mathrm{yy}}\right)
\end{array}\right)\binom{\left(\hat{U}_{\mathrm{phx}}\right.}{\left(\hat{\mathrm{U}}_{\mathrm{phy}}\right.}\right)
$$

Hence

$$
\begin{aligned}
& \left(\hat{I}_{x}\right)=\left(\hat{Y}_{x x}\right)\left(\hat{U}_{p x}\right)+\left(\hat{Y}_{x y}\right)\left(\hat{U}_{p h y}\right) \\
& \left(\hat{I}_{y}\right)=\left(\hat{Y}_{x y}\right)^{T}\left(\hat{U}_{p \mathrm{pxx}}\right)+\left(\hat{Y}_{y y}\right)\left(\hat{U}_{p h y}\right)
\end{aligned}
$$

Calculate $\left(\hat{\mathrm{I}}_{\mathrm{x}}\right),\left(\hat{\mathrm{U}}_{\text {phy }}\right)$

$$
\left(\hat{\mathrm{U}}_{\mathrm{phy}}\right)=\left(\hat{\mathrm{Y}}_{\mathrm{yy}}\right)^{-1}\left(\hat{\mathrm{I}}_{\mathrm{y}}\right)-\left(\hat{\mathrm{Y}}_{\mathrm{yy}}\right)^{-1}\left(\hat{\mathrm{Y}}_{\mathrm{xy}}\right)^{\mathrm{T}}\left(\hat{\mathrm{U}}_{\mathrm{phx}}\right)
$$

If some nodes are connected to the ground (through an admittance), then the admittance matrix is regular \rightarrow to set all nodal current is enough.

$$
\left(\hat{\mathrm{U}}_{\mathrm{f}}\right)=(\hat{\mathrm{Y}})^{-1}(\hat{\mathrm{I}})
$$

Note 1: Similar for DC grid.

$$
(\mathrm{I})=(\mathrm{G})(\mathrm{U})
$$

Note 2: For power engineering - powers are set, currents are calculated from the powers.

$$
\hat{\mathrm{I}}=\left(\frac{\hat{\mathrm{S}}}{\sqrt{3} \hat{\mathrm{U}}}\right)^{*}
$$

Results are not precise if nominal voltages are used \rightarrow iteration methods.

HV lines

No load points.
Open-circuit

$$
\begin{aligned}
& \hat{\mathrm{I}}_{2}=0 \\
& \hat{\mathrm{U}}_{\mathrm{f} 10}=\hat{\mathrm{U}}_{\mathrm{f} 2} \cosh \hat{\gamma} \mathrm{l} \\
& \hat{\mathrm{I}}_{10}=\frac{\hat{\mathrm{U}}_{\mathrm{f} 2}}{\hat{\mathrm{Z}}_{\mathrm{v}}} \sinh \hat{\gamma} \mathrm{l}
\end{aligned}
$$

For ideal line

$$
\begin{aligned}
& \hat{\mathrm{U}}_{\mathrm{f} 10}=\hat{\mathrm{U}}_{\mathrm{f} 2} \cos \beta 1 \\
& \hat{\mathrm{I}}_{10}=\mathrm{j} \frac{\hat{\mathrm{U}}_{\mathrm{f} 2}}{\mathrm{Z}_{\mathrm{v}}} \sin \beta 1
\end{aligned}
$$

It is valid $\mathrm{U}_{\mathrm{f} 10} \leq \mathrm{U}_{\mathrm{f} 2} \rightarrow$ Ferranti effect Line character is like capacity.

Short-circuit

$$
\begin{aligned}
& \hat{\mathrm{U}}_{\mathrm{f} 2}=0 \\
& \hat{\mathrm{U}}_{\mathrm{f} 1}=\hat{\mathrm{Z}}_{\mathrm{v}} \hat{\mathrm{I}}_{2} \sinh \hat{\gamma} \mathrm{l} \\
& \hat{\mathrm{I}}_{1}=\hat{\mathrm{I}}_{2} \cosh \hat{\gamma} \mathrm{l}
\end{aligned}
$$

For ideal line

$$
\hat{\mathrm{U}}_{\mathrm{f} 1}=\mathrm{j} \mathrm{Z}_{\mathrm{v}} \hat{\mathrm{I}}_{2} \sin \beta 1
$$

$$
\hat{\mathrm{I}}_{1}=\hat{\mathrm{I}}_{2} \cos \beta 1
$$

Voltage decreases from the beginning to the end.
Line character is like inductance.

Example:

line $1 \times 400 \mathrm{kV}$ with two ground wires phase conductor: 3xACSR 450/52, ground wire: ACSR $185 / 31,1=300 \mathrm{~km}$ $\mathrm{R}_{1}=0,021 \Omega / \mathrm{km} ; \mathrm{X}_{1}=0,293 \Omega / \mathrm{km} ; \mathrm{G}_{1}=2 \cdot 10^{-8} \mathrm{~S} / \mathrm{km} ; \mathrm{B}_{1}=3,9 \cdot 10^{-6} \mathrm{~S} / \mathrm{km}$

Voltage level $\left(\mathrm{U}_{2}=400 \mathrm{kV}\right)$

$\mathrm{U}_{1}<\mathrm{U}_{\mathrm{n}}$: Ferranti effect
$\mathrm{U}_{1} \sim \mathrm{U}_{\mathrm{n}}$ for S_{p} area and $\cos \varphi=1$

Transmission power factor

$\cos \varphi_{1}=\frac{\mathrm{P}_{1}}{\mathrm{~S}_{1}}$

open-circuit \rightarrow line is like capacitive load higher power \rightarrow line „self-compensation"

Line reactive power

Line losses

$=$ open-circuit $\sim \mathrm{U}^{2}+$ load $\sim \mathrm{I}^{2}$

$\Delta P(M W)$

Transmission efficiency

$\eta=\frac{P_{2}}{P_{1}}$

maximum for low powers for higher powers a flat curve

