
STEADY STATES CALCULATIONS IN POWER SYSTEMS 
Current loads 

 

Simple DC line (LV, MV) 
 

Double-wire circuit. Assumption: constant cross-section and resistivity. 
 

Single loads supplied from one side 
Standard distribution lines. 
 

 
 



a) addition method 
It adds voltage drops along the power line sections.  
(Voltage drops are always in both conductors in the section.) 
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b) superposition method 
It adds voltage drops for individual discrete loads: 
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Relative voltage drop: 
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Note. Losses must be calculated only by means of the addition method! 
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Single loads supplied from both sides – the same feeders voltages 
 

  
 

• Ring grid, higher reliability of supply. 
• Two one-feeder lines after a fault. More often also in standard 

operation mode. 
• Calculation of current distribution and voltage drops. 



Consider IB as a negative load: 
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Hence (moment theorem) 
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Analogous (current moments to other feeder) 
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Current distribution identifies the place with the biggest voltage drop = the 
place with feeder division → split-up into two one-feeder lines. 
 

 
 

Single loads supplied from both sides – different feeders voltages 
 

Two different sources, meshed grid. 

 
 



Superposition: 
1) Current distribution with the same voltages. 
2) Different voltages and zero loads → balancing current 
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3) Sum of the solutions 1+2 
 

Further calculation is the same. 
 

Or directly: 
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AC - 3 phase power lines LV, MV 
 

Series parameters are applied, for LV X→0. 
 

3 phase power line MV, 1 load at the end 
 

Symmetrical load → 1 phase diagram, operational parameters. 
 
 
 
 
 
Complex voltage drop 
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Phasor diagram (input Uph2, I, φ2) 
(angle υ usually small, up to 3°) 
 

Imagin. part neglecting and modifications 
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3 phase active power losses 
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! Even the reactive current causes active power losses! 



3 phase MV power line supplied from one side 
 

Constant series impedance 
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Voltage drop at the end (needn’t be the highest one, it depends on load 
character) 
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After imaginary part neglecting 
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Voltage drop up to the point X (not end) 
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3 phase MV power line supplied from both sides 
 

 



 

Calculation as for DC line (feeder is a negative load, zero voltage drop). 
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Moment theorems 
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(In principle it is the current divider for each load.) 
 

Active and reactive current sign change could be in different nodes → 
maximum voltage drop should be checked in all grid points. 
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Meshed grids MV 
 

Bus voltage method 
 

Grid with n nodes. Set series branch parameters kmẐ , load currents (bus 

currents) kÎ , min. 1 bus voltage phkÛ  (between the bus and the ground). 

 



Calculation with series admittances 

kmkm

1
kmkm jXR

1ẐŶ
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Branches k, m 
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After modifications: 
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Admittance matrix parameters definition: 
Bus self-admittance (diagonal element) 
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Between buses admittance (non-diagonal element) 
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Matrix form 

  ( ) ( )( )phÛŶÎ =  
 

Set voltages at buses 1 to k (x), currents at buses k+1 to n (y) 
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Hence 
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Calculate ( ) ( )phyx Û,Î  
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If some nodes are connected to the ground (through an admittance), then 
the admittance matrix is regular → to set all nodal current is enough. 
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Note 1: Similar for DC grid. 
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Note 2: For power engineering – powers are set, currents are calculated 
from the powers. 
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Results are not precise if nominal voltages are used → iteration methods. 



HV lines 
 

No load points. 
 

Open-circuit 
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  It is valid 2f10f UU ≤  → Ferranti effect 
  Line character is like capacity. 



Short-circuit 
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For ideal line 
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  Voltage decreases from the beginning to the end.  

Line character is like inductance. 
 



Example:  
line 1 x 400 kV with two ground wires 
phase conductor: 3xACSR 450/52, ground wire: ACSR 185/31, l = 300 km 
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Voltage level (U2 = 400 kV) 

 
  U1 < Un: Ferranti effect 
  U1 ~ Un for Sp  area and cos φ = 1 



Transmission power factor 
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  open-circuit → line is like capacitive load 

higher power → line „self-compensation“ 



Line reactive power 

 



Line losses 
= open-circuit ~ U2 + load ~ I2 
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Transmission efficiency 
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  maximum for low powers 
  for higher powers a flat curve 


