Short-circuits in ES

Short-circuit:

- cross fault, quick emergency change in ES
- the most often fault in ES
- transient events occur during short-circuits

Short-circuit formation:

- fault connection between phases or between phase(s) and the ground in the system with the grounded neutral point

Main causes:

- insulation defect caused by overvoltage
- direct lightning strike
- insulation aging
- direct damage of overhead lines or cables

Short-circuit impacts:

- total impedance of the network affected part decreases
- currents are increasing $=>$ so called short-circuit currents I_{k}
- the voltage decreases near the short-circuit
- I_{k} impacts causes device heating and power strain
- problems with I_{k} disconnecting, electrical arc and overvoltage occurred during the short-circuit
- synchronism disruption of ES working in parallel
- communication line disturbing $=>$ induced voltages

Note: In short-circuit places transient resistances arise.

- transient resistance is a sum of electrical arc resistance and resistance of other I_{k} way parts (determination of exact resistances is difficult)
- current and electrical arc length is changing during short-circuit => resistance of electrical arc is also changing
- transient resistances are neglected for I_{k} calculation (dimensioning of electrical devices) \rightarrow perfect short-circuits

Short-circuits types

Symmetrical short-circuits:

- Three-phase short-circuit => all 3 phases are affected by short-circuit
- little occurrence in the case of overhead lines
- the most occurrences in the case of cable lines $=>$ other kinds of faults change to 3ph short-circuit due to electrical-arc impact
Unbalanced (asymmetrical) short-circuits:
- phase-to-phase short-circuit
- double-phase-to-ground short-circuit
- single-phase-to-ground short-circuit:
- in MV a different kind of fault => so called ground fault
- in case of ground fault in MV (insulated or indirectly grounded neutral point) $=>$ no change in LV (grounded neutral point)

Shortcircuit type	Diagram	Occurrence probability (\%)		
		MV	110	$\begin{aligned} & 220 \\ & \mathrm{kV} \end{aligned}$
3 ph		5	0,6	0,9
2 ph		10	4,8	0,6
2 ph to ground		20	3,8	5,4
1 ph		*	91	93,1

Short-circuit current time behaviour

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{L}}=\frac{1}{2} \mathrm{Li}^{2} \\
& \mathrm{P}=\frac{\mathrm{dW}}{\mathrm{~L}} \\
& \mathrm{dt}
\end{aligned} \infty \rightarrow \text { transient event } \quad l
$$

Time behaviour: open-circuit, resistances neglected \rightarrow reactance, current of inductive character, higher I_{k} values

Impact of R on I_{k} attributes:

- finite R values decrease short-circuit impacts
- R neglecting results in time constants prolongation $\tau=\mathrm{L} / \mathrm{R}$
$\mathrm{U}=\mathrm{U}_{\max }$ in the short-circuit moment $\rightarrow \mathrm{I}_{\mathrm{k}}$ starts from zero (min. value)

Short-circuit components ($\mathrm{f}=50 \mathrm{~Hz}$):

- sub-transient - exponential envelope, $\mathrm{T}_{\mathrm{k}}^{\prime \prime}$ (damping winding)
- transient - exponential envelope, $\mathrm{T}_{\mathrm{k}}^{\prime}$ (field winding)
- steady-state - constant magnitude

It is caused by synchronous machine behaviour during short-circuit \rightarrow more significant during short-circuits near the machine.
$\mathrm{U}=0$ in the short-circuit moment $\rightarrow \mathrm{I}_{\mathrm{k}}$ starts from max. value

Values

- symmetrical short-circuit current I_{ks} - steady-state, transient and sub-transient component sum, RMS value
- sub-transient short-circuit current $\mathrm{I}_{\mathrm{k}}^{\prime \prime}-\mathrm{I}_{\mathrm{ks}}$ RMS value in the period of sub-transient component $\mathrm{t} \doteq\left(0 \div 3 \mathrm{~T}_{\mathrm{k}}^{\prime \prime}\right)$
- initial sub-transient short-circuit current $\mathrm{I}_{\mathrm{k} 0}^{\prime \prime}-\mathrm{I}_{\mathrm{k}}^{\prime \prime}$ value in the moment of short-circuit origin $t=0$
- DC component I_{ka} - disappears exponentially, T_{ka}
- peak short-circuit current I_{km} - the first half-period magnitude during the maximal DC component

Short-circuits in 3ph system

Conversion between phase values and symmetrical components

$$
\begin{aligned}
& \left(\mathrm{U}_{\mathrm{ABC}}\right)=\left(\begin{array}{l}
\hat{\mathrm{U}}_{\mathrm{A}} \\
\hat{\mathrm{U}}_{\mathrm{B}} \\
\hat{\mathrm{U}}_{\mathrm{C}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hat{a}^{2} & \hat{a} & 1 \\
\hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} & 1
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{U}}_{1} \\
\hat{\mathrm{U}}_{2} \\
\hat{U}_{0}
\end{array}\right)=(\mathrm{T})\left(\mathrm{U}_{120}\right) \\
& \left(\mathrm{U}_{120}\right)=\left(\begin{array}{c}
\hat{U}_{1} \\
\hat{\mathrm{U}}_{2} \\
\hat{\mathrm{U}}_{0}
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
1 & \hat{a} & \hat{a}^{2} \\
1 & \hat{a}^{2} & \hat{a} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\hat{U}_{\mathrm{A}} \\
\hat{\mathrm{U}}_{\mathrm{B}} \\
\hat{\mathrm{U}}_{\mathrm{C}}
\end{array}\right)=\left(\mathrm{T}^{-1}\right)\left(\mathrm{U}_{\mathrm{ABC}}\right)
\end{aligned}
$$

Impedance matrix in symmetrical components (for series sym. segment)

$$
\left(\mathrm{Z}_{120}\right)=\left(\begin{array}{ccc}
\hat{Z}_{1} & 0 & 0 \\
0 & \hat{Z}_{2} & 0 \\
0 & 0 & \hat{Z}_{0}
\end{array}\right)=\left(\begin{array}{ccc}
\hat{Z}-\hat{Z}^{\prime} & 0 & 0 \\
0 & \hat{Z}-\hat{Z}^{\prime} & 0 \\
0 & 0 & \hat{Z}+2 \hat{Z}^{\prime}
\end{array}\right)
$$

3ph system during short-circuit - internal generator voltage E (or U_{i})

$$
\left(\mathrm{E}_{\mathrm{ABC}}\right)=\left(\mathrm{Z}_{\mathrm{ABC}}\right)\left(\mathrm{I}_{\mathrm{ABC}}\right)+\left(\mathrm{U}_{\mathrm{ABC}}\right)
$$

Symmetrical system (independent systems 1, 2, 0)

$$
\begin{array}{ll}
& \hat{\mathrm{E}}_{1}=\hat{\mathrm{Z}}_{1} \hat{\mathrm{I}}_{1}+\hat{\mathrm{U}}_{1} \\
& \left.\hat{\mathrm{E}}_{120}\right)=\left(\mathrm{Z}_{120}\right)\left(\mathrm{I}_{120}\right)+\left(\mathrm{U}_{120}\right) \\
& \hat{\mathrm{Z}}_{2} \hat{\mathrm{I}}_{2}+\hat{\mathrm{U}}_{2}=\hat{\mathrm{Z}}_{0} \hat{\mathrm{I}}_{0}+\hat{\mathrm{U}}_{0}
\end{array}
$$

Generator symmetrical voltage \rightarrow only positive sequence component Reference phase A:

$$
\begin{aligned}
& \left(\mathrm{E}_{120}\right)=\left(\mathrm{T}^{-1}\right)\left(\mathrm{E}_{\mathrm{ABC}}\right)=\frac{1}{3}\left(\begin{array}{ccc}
1 & \hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} \\
1 & \hat{\mathrm{a}}^{2} & \hat{\mathrm{a}} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{E}}_{\mathrm{A}} \\
\hat{\mathrm{a}}^{2} \hat{\mathrm{E}}_{\mathrm{A}} \\
\hat{\mathrm{a}}_{\mathrm{A}}
\end{array}\right)=\left(\begin{array}{c}
\hat{\mathrm{E}}_{\mathrm{A}} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
\hat{\mathrm{E}} \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{c}
\hat{\mathrm{E}}_{1} \\
\hat{\mathrm{E}}_{2} \\
\hat{\mathrm{E}}_{0}
\end{array}\right)=\left(\begin{array}{c}
\hat{\mathrm{E}} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
\hat{\mathrm{Z}}_{1} & 0 & 0 \\
0 & \hat{\mathrm{Z}}_{2} & 0 \\
0 & 0 & \hat{Z}_{0}
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{I}}_{1} \\
\hat{\mathrm{I}}_{2} \\
\hat{\mathrm{I}}_{0}
\end{array}\right)+\left(\begin{array}{c}
\hat{\mathrm{U}}_{1} \\
\hat{\mathrm{U}}_{2} \\
\hat{U}_{0}
\end{array}\right)
\end{aligned}
$$

Negative and zero sequence are caused by voltage unbalance in the faulted place.

In the fault point 6 quantities $\left(\mathrm{U}_{120}, \mathrm{I}_{120}\right) \rightarrow 3$ equations necessary to be added by other 3 equations according to the short-circuit type (local unbalance description).

Three-phase (to-ground) short-circuit

3 char. equations

$$
\hat{\mathrm{U}}_{\mathrm{A}}=\hat{\mathrm{U}}_{\mathrm{B}}=\hat{\mathrm{U}}_{\mathrm{C}}=0
$$

Components

$$
\begin{aligned}
& \left(\mathrm{U}_{120}\right)=\left(\mathrm{T}^{-1}\right)\left(\mathrm{U}_{\mathrm{ABC}}\right)=\frac{1}{3}\left(\begin{array}{ccc}
1 & \hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} \\
1 & \hat{\mathrm{a}}^{2} & \hat{\mathrm{a}} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \hat{\mathrm{U}}_{1}=\hat{\mathrm{U}}_{2}=\hat{\mathrm{U}}_{0}=0 \\
& \hat{\mathrm{I}}_{1}=\frac{\hat{\mathrm{E}}}{\hat{\mathrm{Z}}_{1}} ; \hat{\mathrm{I}}_{2}=0 ; \hat{\mathrm{I}}_{0}=0
\end{aligned}
$$

Phases

$$
\begin{aligned}
& \left(\mathrm{I}_{\mathrm{ABC}}\right)=(\mathrm{T})\left(\mathrm{I}_{120}\right) \\
& \hat{\mathrm{I}}_{\mathrm{A}}=\frac{\hat{\mathrm{E}}}{\hat{\mathrm{Z}}_{1}} ; \hat{\mathrm{I}}_{\mathrm{B}}=\hat{\mathrm{a}}^{2} \frac{\hat{\mathrm{E}}}{\hat{\mathrm{Z}}_{1}} ; \hat{\mathrm{I}}_{\mathrm{C}}=\hat{\mathrm{a}} \frac{\hat{\mathrm{E}}}{\hat{\mathrm{Z}}_{1}}
\end{aligned}
$$

Only the positive-sequence component included.

Single-phase-to-ground short-circuit

3 char. equations

$$
\hat{\mathrm{U}}_{\mathrm{A}}=0 ; \hat{\mathrm{I}}_{\mathrm{B}}=\hat{\mathrm{I}}_{\mathrm{C}}=0
$$

Components

$$
\begin{aligned}
& \left(\mathrm{I}_{120}\right)=\left(\mathrm{T}^{-1}\right)\left(\mathrm{I}_{\mathrm{ABC}}\right)=\frac{1}{3}\left(\begin{array}{ccc}
1 & \hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} \\
1 & \hat{\mathrm{a}}^{2} & \hat{\mathrm{a}} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{I}}_{\mathrm{A}} \\
0 \\
0
\end{array}\right)=\frac{1}{3}\binom{\hat{\mathrm{I}}_{\mathrm{A}}}{\hat{\mathrm{I}}_{\mathrm{A}}} \\
& \hat{\mathrm{I}}_{1}=\hat{\mathrm{I}}_{2}=\hat{\mathrm{I}}_{0}=\frac{\hat{\mathrm{E}}}{\hat{\mathrm{Z}}_{1}+\hat{\mathrm{Z}}_{2}+\hat{\mathrm{Z}}_{0}} \\
& \hat{\mathrm{U}}_{1}=\left(\hat{\mathrm{Z}}_{0}+\hat{\mathrm{Z}}_{2}\right) \hat{\mathrm{I}}_{1} \\
& \hat{\mathrm{U}}_{2}=-\hat{\mathrm{Z}}_{2} \mathrm{I}_{1} \\
& \hat{\mathrm{U}}_{0}=-\hat{\mathrm{Z}}_{0} \hat{\mathrm{I}}_{1}
\end{aligned}
$$

All three components are in series.

Phases

$$
\begin{aligned}
& \left(\mathrm{I}_{\mathrm{ABC}}\right)=(\mathrm{T})\left(\mathrm{I}_{120}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hat{\mathrm{a}}^{2} & \hat{a} & 1 \\
\hat{\mathrm{a}} & \hat{a}^{2} & 1
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{I}}_{1} \\
\hat{\mathrm{I}}_{1} \\
\hat{\mathrm{I}}_{1}
\end{array}\right)=\left(\begin{array}{c}
3 \hat{\mathrm{I}}_{1} \\
0 \\
0
\end{array}\right) \\
& \hat{\mathrm{I}}_{\mathrm{A}}=\frac{3 \hat{\mathrm{E}}}{\hat{\mathrm{Z}}_{1}+\hat{\mathrm{Z}}_{2}+\hat{\mathrm{Z}}_{0}} ; \hat{\mathrm{I}}_{\mathrm{B}}=0 ; \hat{\mathrm{I}}_{\mathrm{C}}=0 \\
& \left(\mathrm{U}_{\mathrm{ABC}}\right)=(\mathrm{T})\left(\mathrm{U}_{120}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hat{\mathrm{a}}^{2} & \hat{\mathrm{a}} & 1 \\
\hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} & 1
\end{array}\right)\left(\begin{array}{c}
\left(\hat{\mathrm{Z}}_{0}+\hat{\mathrm{Z}}_{2}\right) \hat{\mathrm{I}}_{1} \\
-\hat{\mathrm{Z}}_{2} \hat{I}_{1} \\
-\hat{Z}_{0} \hat{\mathrm{I}}_{1}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\left(\hat{a}^{2}-\hat{\mathrm{a}}\right) \hat{Z}_{2}+\left(\hat{\mathrm{a}}^{2}-1\right) \hat{\mathrm{Z}}_{0} \\
\left(\hat{\mathrm{a}}-\hat{\mathrm{a}}^{2}\right) \hat{\mathrm{Z}}_{2}+(\hat{\mathrm{a}}-1) \hat{\mathrm{Z}}_{0}
\end{array}\right)
\end{aligned}
$$

Phase-to-phase short-circuit

3 char. equations

$$
\hat{U}_{B}=\hat{U}_{C} ; \hat{I}_{B}=-\hat{I}_{C} ; \hat{I}_{A}=0
$$

Components
$\left(\mathrm{I}_{120}\right)=\frac{1}{3}\left(\begin{array}{ccc}1 & \hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} \\ 1 & \hat{\mathrm{a}}^{2} & \hat{\mathrm{a}} \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{c}0 \\ \hat{\mathrm{I}}_{\mathrm{B}} \\ -\hat{\mathrm{I}}_{\mathrm{B}}\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}\mathrm{j} \sqrt{3} \hat{\mathrm{I}}_{\mathrm{B}} \\ -\mathrm{j} \sqrt{3} \hat{\mathrm{I}}_{\mathrm{B}} \\ 0\end{array}\right)$

$$
\hat{\mathrm{I}}_{1}=\frac{\hat{\mathrm{E}}}{\hat{\mathrm{Z}}_{1}+\hat{\mathrm{Z}}_{2}} ; \hat{\mathrm{I}}_{2}=-\hat{\mathrm{I}}_{1} ; \hat{\mathrm{I}}_{0}=0
$$

$$
\hat{\mathrm{U}}_{1}=\hat{\mathrm{U}}_{2}=\frac{\hat{\mathrm{Z}}_{2} \cdot \hat{\mathrm{E}}}{\hat{\mathrm{Z}}_{1}+\hat{\mathrm{Z}}_{2}}=\hat{\mathrm{Z}}_{2} \cdot \hat{\mathrm{I}}_{1}
$$

$$
\hat{\mathrm{U}}_{0}=0
$$

Positive and negative components in parallel.

Phases

$$
\begin{aligned}
& \left(I_{A B C}\right)=(T)\left(I_{120}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hat{a}^{2} & \hat{a} & 1 \\
\hat{a} & \hat{a}^{2} & 1
\end{array}\right)\left(\begin{array}{c}
\hat{I}_{1} \\
-\hat{I}_{1} \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
-j \sqrt{3} \hat{I}_{1} \\
j \sqrt{3} \hat{\mathrm{I}}_{1}
\end{array}\right) \\
& \hat{\mathrm{I}}_{\mathrm{A}}=0 ; \hat{\mathrm{I}}_{\mathrm{B}}=\frac{-\mathrm{j} \sqrt{3} \hat{\mathrm{E}}}{\hat{\mathrm{Z}}_{1}+\hat{\mathrm{Z}}_{2}} ; \hat{\mathrm{I}}_{\mathrm{C}}=\frac{j \sqrt{3} \hat{\mathrm{E}}}{\hat{\mathrm{Z}}_{1}+\hat{\mathrm{Z}}_{2}} \\
& \left(\mathrm{U}_{\mathrm{ABC}}\right)=(\mathrm{T})\left(\mathrm{U}_{120}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hat{a}^{2} & \hat{a} & 1 \\
\hat{a} & \hat{a}^{2} & 1
\end{array}\right)\left(\begin{array}{c}
\hat{U}_{1} \\
\hat{U}_{1} \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \hat{U}_{1} \\
-\hat{U}_{1} \\
-\hat{U}_{1}
\end{array}\right)=\left(\begin{array}{c}
2 \hat{Z}_{2} \cdot \hat{\mathrm{I}}_{1} \\
-\hat{Z}_{2} \cdot \hat{\mathrm{I}}_{1} \\
-\hat{\mathrm{Z}}_{2} \cdot \hat{\mathrm{I}}_{1}
\end{array}\right)
\end{aligned}
$$

Double-phase-to-ground short-circuit

3 char. equations

$$
\hat{\mathrm{U}}_{\mathrm{B}}=\hat{\mathrm{U}}_{\mathrm{C}}=0 ; \hat{\mathrm{I}}_{\mathrm{A}}=0
$$

Components

$$
\begin{aligned}
& \left(U_{120}\right)=\frac{1}{3}\left(\begin{array}{lll}
1 & \hat{a} & \hat{a}^{2} \\
1 & \hat{a}^{2} & \hat{a} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\hat{U}_{A} \\
0 \\
0
\end{array}\right)=\frac{1}{3}\left(\begin{array}{l}
\hat{U}_{A} \\
\hat{U}_{A} \\
\hat{U}_{A}
\end{array}\right) \\
& \hat{\mathrm{I}}_{1}=\frac{\hat{\mathrm{E}}}{\hat{\mathrm{Z}}_{1}+\frac{\hat{\mathrm{Z}} \hat{\mathrm{Z}}_{2}}{\hat{\mathrm{Z}}_{0}+\hat{\mathrm{Z}}_{2}}} \\
& \hat{\mathrm{I}}_{2}=-\frac{\hat{\mathrm{Z}}_{0}}{\hat{\mathrm{Z}}_{0}+\hat{\mathrm{Z}}_{2}} \hat{\mathrm{I}}_{1} ; \hat{\mathrm{I}}_{0}=-\frac{\hat{\mathrm{Z}}_{2}}{\hat{\mathrm{Z}}_{0}+\hat{\mathrm{Z}}_{2}} \hat{\mathrm{I}}_{1} \\
& \hat{\mathrm{U}}_{1}=\hat{\mathrm{U}}_{2}=\hat{\mathrm{U}}_{0}=\frac{\hat{\mathrm{E}} \frac{\hat{\mathrm{Z}}_{0} \hat{\mathrm{Z}}_{2}}{\hat{\mathrm{Z}}_{0}+\hat{\mathrm{Z}}_{2}}}{\hat{\mathrm{Z}}_{1}+\frac{\hat{\mathrm{Z}}_{0} \hat{\mathrm{Z}}_{2}}{\hat{\mathrm{Z}}_{0}+\hat{\mathrm{Z}}_{2}}}
\end{aligned}
$$

All three components are in parallel.
Phases

$$
\begin{aligned}
& \left(\mathrm{I}_{\mathrm{ABC}}\right)=(\mathrm{T})\left(\mathrm{I}_{120}\right) \\
& \hat{\mathrm{I}}_{\mathrm{B}}=\frac{\hat{\mathrm{E}}\left(\hat{\mathrm{Z}}_{0}\left(\hat{\mathrm{a}}^{2}-\hat{\mathrm{a}}\right)+\hat{\mathrm{Z}}_{2}\left(\hat{\mathrm{a}}^{2}-1\right)\right)}{\hat{\mathrm{Z}}_{1} \hat{\mathrm{Z}}_{2}+\hat{\mathrm{Z}}_{0} \hat{\mathrm{Z}}_{1}+\hat{\mathrm{Z}}_{0} \hat{\mathrm{Z}}_{2}} \\
& \hat{\mathrm{I}}_{\mathrm{C}}=\frac{\hat{\mathrm{E}}\left(\hat{\mathrm{Z}}_{0}\left(\hat{\mathrm{a}}-\hat{\mathrm{a}}^{2}\right)+\hat{\mathrm{Z}}_{2}(\hat{\mathrm{a}}-1)\right)}{\hat{\mathrm{Z}}_{1} \hat{\mathrm{Z}}_{2}+\hat{\mathrm{Z}}_{0} \hat{\mathrm{Z}}_{1}+\hat{\mathrm{Z}}_{0} \hat{\mathrm{Z}}_{2}}
\end{aligned}
$$

$$
\left(\mathrm{U}_{\mathrm{ABC}}\right)=(\mathrm{T})\left(\mathrm{U}_{120}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hat{\mathrm{a}}^{2} & \hat{\mathrm{a}} & 1 \\
\hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} & 1
\end{array}\right)\left(\begin{array}{|c}
\hat{\mathrm{U}}_{1} \\
\hat{\mathrm{U}}_{1} \\
\hat{\mathrm{U}}_{1}
\end{array}\right)=\left(\begin{array}{c}
3 \hat{\mathrm{U}}_{1} \\
0 \\
0
\end{array}\right)
$$

Components during short-circuit:

3 ph
2ph
2 ph ground positive, negative, zero
1 ph positive, negative, zero
positive
positive, negative

Short-circuits calculation by means of relative values

Relative values - related to a defined base.

$$
\begin{array}{ll}
\text { base power (3ph) } & \mathrm{S}_{\mathrm{v}}(\mathrm{VA}) \\
\text { base voltage (phase-to-phase) } & \mathrm{U}_{\mathrm{v}}(\mathrm{~V}) \\
\text { base current } & \mathrm{I}_{\mathrm{v}}(\mathrm{~A}) \\
\text { base impedance } & \mathrm{Z}_{\mathrm{v}}(\Omega)
\end{array}
$$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{v}}=\sqrt{3} \mathrm{U}_{\mathrm{v}} \mathrm{I}_{\mathrm{v}} \\
& \mathrm{Z}_{\mathrm{v}}=\frac{\mathrm{U}_{\mathrm{vf}}}{\mathrm{I}_{\mathrm{v}}}
\end{aligned}
$$

Relative impedance

$$
\mathrm{z}=\frac{\mathrm{Z}}{\mathrm{Z}_{\mathrm{v}}}=\frac{\mathrm{Z}}{\frac{\mathrm{U}_{\mathrm{vf}}}{I_{v}}}=\mathrm{Z} \frac{\mathrm{I}_{v}}{\mathrm{U}_{\mathrm{vf}}} \frac{3 \mathrm{U}_{\mathrm{vf}}}{3 \mathrm{U}_{\mathrm{vf}}}=\mathrm{Z} \frac{\mathrm{~S}_{\mathrm{v}}}{3 \mathrm{U}_{\mathrm{vf}}^{2}}=\mathrm{Z} \frac{\mathrm{~S}_{\mathrm{v}}}{\mathrm{U}_{\mathrm{v}}^{2}}
$$

Initial sub-transient short-circuit current (3ph short-circuit)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{k} 0}^{\prime \prime}=\left|\hat{\mathrm{I}}_{\mathrm{A}}\right|=\frac{\left|\hat{\mathrm{U}}_{\mathrm{f}}\right|}{\left|\hat{\mathrm{Z}}_{1}\right|} \\
& \mathrm{Z}_{1}=\mathrm{Z}_{1} \frac{\mathrm{U}_{\mathrm{v}}^{2}}{\mathrm{~S}_{\mathrm{v}}}
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{k} 0}^{\prime \prime}=\frac{\frac{\mathrm{U}_{\mathrm{v}}}{\sqrt{3}}}{\mathrm{Z}_{1} \frac{\mathrm{U}_{\mathrm{v}}^{2}}{\mathrm{~S}_{\mathrm{v}}}}=\frac{1}{\mathrm{Z}_{1}} \frac{\mathrm{~S}_{\mathrm{v}}}{\sqrt{3} \mathrm{U}_{\mathrm{v}}}=\frac{1}{\mathrm{Z}_{1}} \mathrm{I}_{\mathrm{v}}
$$

Initial sub-transient short-circuit power

$$
\mathrm{S}_{\mathrm{k} 0}^{\prime \prime}=\sqrt{3} \mathrm{U}_{\mathrm{v}} \mathrm{I}_{\mathrm{k} 0}^{\prime \prime}=\sqrt{3} \mathrm{U}_{\mathrm{v}} \frac{\mathrm{I}_{\mathrm{v}}}{\mathrm{z}_{1}}=\frac{1}{\mathrm{z}_{1}} \mathrm{~S}_{\mathrm{v}}
$$

Similarly for
1ph short-circuit

$$
I_{k 0}^{\prime \prime}{ }^{(1)}=\frac{3}{z_{1}+z_{2}+z_{0}} I_{v}
$$

2 ph short-circuit

$$
\mathrm{I}_{\mathrm{k} 0}^{\prime \prime(2)}=\frac{\sqrt{3}}{\mathrm{z}_{1}+\mathrm{z}_{2}} \mathrm{I}_{\mathrm{v}}
$$

Note: Sometimes it is respected generator loading, more precisely higher internal generator voltage than nominal one.

$$
\begin{gathered}
\mathrm{I}_{\mathrm{k} 0}^{\prime \prime}=\mathrm{k} \frac{1}{\mathrm{Z}_{1}} \mathrm{I}_{\mathrm{v}} \\
\mathrm{k}>1
\end{gathered}
$$

Short-circuit currents impacts

Mechanical impacts

Influence mainly at tightly placed stiff conductors, supporting insulators, disconnectors, construction elements,...
Forces frequency 2 f at $\mathrm{AC} \rightarrow$ dynamic strain.
Force on the conductor in magnetic field

$$
\begin{aligned}
\mathrm{F}= & \mathrm{B} \cdot \mathrm{I} \cdot 1 \cdot \sin \alpha \quad(\mathrm{~N}) \\
& B=\mu \cdot \mathrm{H} \quad(\mathrm{~T}) \\
& \mu_{0}=4 \pi \cdot 10^{-7} \quad(\mathrm{H} / \mathrm{m})
\end{aligned}
$$

α - angle between mag. induction vector and the conductor axis (current direction)

Magnetic field intensity in the distance a from the conductor

$$
\mathrm{H}=\frac{\mathrm{I}}{2 \pi \mathrm{a}} \quad(\mathrm{~A} / \mathrm{m})
$$

2 parallel conductors \rightarrow force perpendicular to the conductor axis $(\sin \alpha=1) \rightarrow$ it is the biggest

$$
\begin{equation*}
\mathrm{F}=4 \pi \cdot 10^{-7} \frac{\mathrm{I}}{2 \pi \mathrm{a}} \mathrm{I} \cdot 1=2 \cdot 10^{-7} \frac{\mathrm{I}^{2}}{\mathrm{a}} \mathrm{l} \tag{N}
\end{equation*}
$$

The highest force corresponds to the highest immediate current value \rightarrow peak short-circuit current I_{km} (${ }^{\text {st }}$ magnitude after s.-c. origin)

$$
\mathrm{I}_{\mathrm{km}}=\sqrt{2} \mathrm{I}_{\mathrm{k} 0}^{\prime \prime}\left(1+\mathrm{e}^{-0,01 / T_{\mathrm{k}}}\right)=\kappa \sqrt{2} \mathrm{I}_{\mathrm{k} 0}^{\prime \prime}
$$

κ - peak coefficient according to grid type $\left(\kappa_{\text {LV }}=1,8 ; \kappa_{H V}=1,7\right)$ theoretical range $\kappa=1 \div 2$
T_{k} - time constant of equivalent short-circuit loop ($\mathrm{L}_{\mathrm{e}} / \mathrm{R}_{\mathrm{e}}$)
i.e. for DC component of short-circuit current
$\mathrm{I}_{\mathrm{k} 0}^{\prime \prime}$ - initial sub-transient short-circuit current
Real value differs according to the short-circuit origin moment. AC component decreasing slower than for DC therefore neglected.

Max. instantaneous force on the conductor length unit

$$
\mathrm{f}=2 \cdot \mathrm{k}_{1} \cdot \mathrm{k}_{2} \cdot 10^{-7} \frac{\mathrm{I}_{\mathrm{km}}^{2}}{\mathrm{a}} \quad(\mathrm{~N} / \mathrm{m})
$$

k_{1} - conductor shape coefficient
k_{2} - conductors configuration and currents phase shift coefficient
a - conductors distance

$l_{k}^{\prime \prime}$ je počătečni souměmý rázovẏ zkratovẏ proud
i_{p} nárazový zkratový proud
/k ustálený zkratový proud
iơ. Stejnosmërná složka zkratového proudu
A počảtečni hodnota stejnosměrné složky $i_{\text {d.c }}$

Heat impacts

Key for dimensioning mainly at freely placed conductors.
They are given by heat accumulation influenced by time-changing current during short-circuit time t_{k} (adiabatic phenomenon).

Heat produced in conductors

$$
\begin{equation*}
\mathrm{Q}=\int_{0}^{\mathrm{t}_{\mathrm{k}}} \mathrm{R}(\vartheta) \cdot \mathrm{i}_{\mathrm{k}}^{2}(\mathrm{t}) \mathrm{dt} \tag{J}
\end{equation*}
$$

Thermal equivalent current - current RMS value which has the same heating effect in the short-circuit duration time as the real short-circuit current

$$
I_{k e}^{2} t_{k}=\int_{0}^{t_{k}} i_{k}^{2}(t) d t \quad I_{k e}=\sqrt{\frac{1}{t_{k}} \int_{0}^{t_{k}} i_{k}^{2}(t) d t}
$$

Calculation according to k_{e} coefficient as $I_{k}^{\prime \prime}$ multiple

$$
\mathrm{I}_{\mathrm{ke}}=\mathrm{k}_{\mathrm{e}} \mathrm{I}_{\mathrm{k}}^{\prime \prime}
$$

