OVERHEAD LINE AMPACITY

<u>Ampacity</u> = Ampere Capacity

- limitation maximal permitted operational conductor temperature; given by the conductor type and operational state
- influences climatic (ambient temperature, wind, Sun)
- other limitations: mechanics (sag), magnetic field, stability

<u>ACSR operational temperature (ACSR –</u> Aluminium Conductor Steel Reinforced; AlFe) in accordance with ČSN EN 50341-3-19

- normal loading: 80°C
- short-term increasing during special loading (up to 150°C)

• during short-circuit: 200°C x manufacturer requirements, optical and mechanical characteristics downgrade, sag

Overhead Line Thermal Models

Conductor heat conductivity λ high \rightarrow conductor temperature considered constant in the cross-section: T_{AV} (°C)

Conductor temperature differential equation

$$M \cdot c_{P} \frac{dT_{AV}}{dt} = P_{J} + P_{S} + P_{M} - P_{R} - P_{C} \quad (W / m)$$

M conductor mass (kg/m)

 c_P specific heat capacity $(J \cdot kg^{-1} \cdot K^{-1})$

 P_J Joule losses (W/m)

 P_S solar radiation heat power (W/m)

 P_{M} ... magnetic field heating (W/m)

 P_R radiation cooling (W/m)

 P_C convective cooling (W/m)

AC resistance respecting el. and mag. influences

 $P_{Z} = P_{J} + P_{M} = R_{ac}I^{2}$ (W/m; Ω/m , A)

Steady state – algebraic equation

$$\frac{\mathrm{dT}_{\mathrm{AV}}}{\mathrm{dt}} = 0$$

ASCR conductors parameters

$$M = \rho_{Al} \cdot S_{Al} + \rho_{Fe} \cdot S_{Fe} \quad (kg/m; kg/m^{3}, m^{2})$$

$$c_{P} = \frac{c_{Al} \cdot \rho_{Al} \cdot S_{Al} + c_{Fe} \cdot \rho_{Fe} \cdot S_{Fe}}{\rho_{Al} \cdot S_{Al} + \rho_{Fe} \cdot S_{Fe}} \quad (J \cdot kg^{-1} \cdot K^{-1})$$

$$\rho_{Al} = 2703 \ kg \cdot m^{-3}, \ \rho_{Fe} = 7780 \ kg \cdot m^{-3}$$

$$c_{Al} = 897 \ J \cdot kg^{-1} \cdot K^{-1}, \ c_{Fe} = 477 \ J \cdot kg^{-1} \cdot K^{-1}$$

Joule losses

$$P_{Z} = I_{P}^{2} \cdot R_{dc0} \cdot k_{ac} \left[1 + b (T_{AV} - T_{0}) \right] \quad (W / m)$$

 R_{dco} . relative DC (Ω/m) for temperature T_0 T_0 reference temperature, usually 20°C b..... resistance temperature coefficient (K^{-1}) $b \approx 4 \cdot 10^{-3} K^{-1}$ k_{ac} ... AC and DC resistance ratio $k_{ac} = R_{ac}/R_{dc} > 1$

Solar radiation heating

$$P_{\rm S} = a \cdot D \cdot I_{\rm pr} \sin \omega \quad (W/m)$$

- a..... solar radiation absorption coefficient (-) a $\approx 0,5 \div 1$
- D..... conductor diameter (m)

I_{př} direct solar radiation (W/m²) solar constant I₀ ≈ 1370 W/m² ω angle between solar beams and conductor angle (°)

Radiation cooling

$$P_{R} = \sigma \cdot \epsilon \cdot \pi \cdot D \cdot \left[(T_{AV} + 273, 15)^{4} - (T_{a} + 273, 15)^{4} \right]$$
(W/m)

T_a.... ambient temperature (°C) σ Stefan-Boltzmann constant $\sigma = 5,67 \cdot 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$

 ε heat radiation emissivity (-), $\varepsilon \approx 0,5$

Convective cooling

$$P_{C} = \alpha \cdot \pi \cdot D \cdot (T_{AV} - T_{a}) \quad (W / m)$$

 α convection heat-transfer coefficient $\alpha = k_{w} \cdot \frac{Nu \cdot \lambda}{D} \quad (W \cdot m^{-2} \cdot K^{-1})$

λ..... air heat conductivity $(W \cdot m^{-1} \cdot K^{-1})$ Nu... Nusselt number (-) free convection Nu_V = f(Gr, Pr) forced convection $Nu_N = f(Re)$ k_w wind angle coefficient (-) $k_w = 1,194 - \sin \psi - 0,194 \cos 2\psi + 0,364 \sin 2\psi$ ψ angle between wind direction and

conductor normal line

Conductor bundle influence

 P_Z – each conductor 1/3 total current (losses) P_S – no changes, variable shadowing P_C – no changes, boundary layer x cm P_R – lower, partial radiation to the same temperature

$$k_{rad} = 1 - \frac{2 \cdot Arctg\left(\frac{D}{2l}\right)}{\pi}$$

1....bundle step (m)

 \rightarrow lower cooling, lower ampacity (c. by 0,5%)

Steady states

Ampacity for given temperature

$$I = \sqrt{\frac{P_{R} + P_{C} - P_{S}}{k_{ac} \cdot R_{dc}}} \quad (A)$$

Steady temperature -4^{th} order algebraic equation

Climatic parameters influence on ampacity

Dynamic states

- Changes in ES configuration, production, loading, 10x minutes, heat energy accumulation.
- Events dynamics depends on heat time constant: e.g. for 434-AL1/59-ST1A $\tau_{vod} = 16,5 \text{ min}$.
- E.g.: AlFe 680/83 overloaded 20 min up to $100^{\circ}C \rightarrow$ dynamic ampacity 2292A.

Transient events

- Lightning, short-circuit currents.
- Adiabatic condition $(P_S = 0, P_R = 0, P_C = 0).$

 $M \cdot c_{P} \frac{dT_{AV}}{dt} = P_{Z} = I_{Z}^{2} \cdot R_{ac0} [1 + b(T_{AV} - T_{0})] (W / m)$

E.g.: AlFe 680/83, short-circuit 50kA for 1s

OHL ampacity

Limit factors for loading

- sag
- substation equipment (CT, disconnectors)
- wire

Temperature measurement

- contact
- thermovision
- sag by means of laser \rightarrow T
- phasor measurement \rightarrow average T
- mechanical auto-oscillations \rightarrow sag \rightarrow T
- longitudinal temperature by means of reflections in optical wires

Loading

- static constant limits, sometimes summer x winter (protections setting)
- dynamic
 - online conductor temperature measurement → data to dispatching → loading reduction
 - online conductor temperature measurement + meteorological data → heat models for decisions

 o offline – only meteodata into models
 o prediction systems based on meteostations network (USA)

• normal x extraordinary states – decision time for dispatcher

Loading control

- reconfiguration
- sources redispatch
- FACTS
- extraordinary states (consumers reducing)

Critical places and states

- power plants outlets
- international connections
- long "parallel" lines
- transit x internal loading
- renewable energy sources

Conductor dimensioning

Border conditions determining approaches

climatic parameter	operational	border conditions		
	conditions	sub-	oritical	limiting
	range	critical	Cincai	mmmg
$T_a (^{o}C)$	-30 to 35	30	35	40
w_{S} (m/s)	0,6 to 30	1,34	0,6	0
I_{gm} (W/m ²)	0 to 800	800	800	1100

Conditions in accordance with ČSN EN 50341-3-19 for determining the highest conductor design temperature:

- ambient temperature 35 °C
- wind speed 0,5 m/s with angle 45° to the conductor axis
- global solar radiation intensity 1000 W/m^2
- absorption coefficient 0,5
- emissivity coefficient 0,5

OHL conductors

Usually more materials, strength + conductivity.

- ACSR (Aluminium Conductor Steel Reinforced)
- AAAC (All-Aluminium Alloy Conductor)
- ACAR (Aluminium Conductor Alloy Reinforced)
- AACSR (Aluminium Alloy Conductor Steel Reinforced)
- AAC (All Aluminium Conductor)

<u>Compact conductors</u> – "without air gaps", more conductive x more heavy

High-temperature conductors

 aluminium and zirconium alloy with strength up to higher temperatures (TAl, ZTAl, XTAl) → e.g. TACSR Permitted steady temperature TAl: 150°C, ZTAl: 210°C, XTAl: 230°C

- strength given by both materials up to a knee-point, further only core, $T_{kn} \approx 100^{\circ}C$
- low core expansion: Invar (Fe + Ni), 1/3 against steel, c. $3 \cdot 10^{-6}$ K⁻¹, small sag x lower strength \rightarrow e.g. TACIR

 conductors with a gap between Fe and Al: GZTACSR (Gap-type ZT-Aluminium Conductor Steel Reinforced) – only the core stressed by tensile, i.e. core expansion (11,5·10⁻⁶ K⁻¹ for Fe x 18·10⁻⁶ K⁻¹ u AlFe)

 composite materials: ACFR (Aluminium Conductor Carbon Fibre Reinforced), ACCC (Aluminium Conductor Composite Core) – small expansion, light, more Al, do 150°C

 compact profiles: ACSR/TW, AERO-Z – smaller diameter sufficient, higher endurance against wind

- optical wires: OPGW (Optical Ground Wire)
 most often in ground wires
 - communication

Case 1 - Final Sag vs Conductor Temperature