Task 8: Waves on Transmission Lines

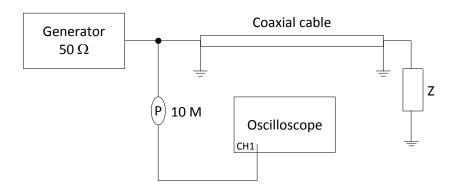
(Laboratory G1-116)

Determine by measurement the voltage waveforms at the reflection of waves on different terminations of a transmission line.

- a) Verify the wave impedance of coaxial cable 198 meters long and determine the speed of electromagnetic wave propagation in the cable.
- b) Record the voltage waveforms in the showed measurement circuit for these different cable terminations:
 - no-load
 - short circuit
 - resistance higher and lower than the wave impedance
 - resistance equal to the wave impedance
 - capacitance 10 nF
 - inductance 31 µH

Used equipment:

G.... function generator


OSC . . . Digital oscilloscope LeCroy

P.... voltage probe 1:10

C.... coaxial cable 198 meters long

Z.... terminating impedance (resistor, capacitor, inductor)

Measurement circuit:

- The generator output is with impedance 50 Ω
- The coaxial cable is supplied by a square pulse signal with amplitude 4 V under 50 Ω output, measured voltage is led by voltage probe to oscilloscope input (the same time decay is chosen for all types of terminating \rightarrow 500 ns/div)
- The offset should be set at $+2 \text{ V} \rightarrow \text{output}$ is square pulses $0 4 \text{ V} 0 4 \text{ V} \dots$
- Used terminating capacitance is C=10 nF (decade) and inductance is L=31 μH (between top and bottom terminals of the small air coil)
- The wave resistance is 50 Ω , need time for a wave transmission to the end of the cable and back is about 1 μ s
- The comparison between waveforms should be a laboratory result (plots of waveforms in the XY plot for each type of terminations)