| At line 1 added 2 lines. |
| [{ALLOW view All}] |
| [{ALLOW edit,upload Trusted}] |
| At line 10 added 1 line. |
| * [Vlnová rovnice|OOEET_VlnovaRovnice] |
| At line 12 changed 1 line. |
| |[{Math fontsize='14' latex='\\nabla\\times\\vec{H} = \\vec{J} + \\frac{\\partial \\vec{D}}{\\partial t}' }] | [{Math fontsize='14' |
| !Ampéruv-Mawellův zákon |
| At line 14 changed 1 line. |
| \oint_{c} H\, dl=I+\frac{d\Psi}{dt}</math>, kde <math>\Psi= \int_{S} D\, dS }] |
| [{LTMath fontsize='14' latex='\\nabla\\times\\vec{H} = \\vec{J} + \\frac{\\partial \\vec{D}}{\\partial t}' }] |
| [{LTMath fontsize='14' |
| At line 16 changed 1 line. |
| [{Math fontsize='14' latex='\\Psi=\\int_S \\vec{D}.d\\vec{S}' }] |
| \oint_{c} H\, dl=I+\frac{d\Psi}{dt}}] |
| At line 18 changed 1 line. |
| |[{Math fontsize='14' latex='\\nabla\\times\\vec{E} = - \\frac{\\partial \\vec{B}}{\\partial t}' }] | [{Math fontsize='14' |
| Elektrický indukční tok je definován jako: |
| At line 20 changed 1 line. |
| \oint_{c} E\, dl=- \frac{d\Phi}{dt} }] |
| [{LTMath fontsize='14' latex='\\Psi=\\int_S \\vec{D}.d\\vec{S}' }] |
| At line 22 changed 1 line. |
| [{Math fontsize='14' latex='\\Phi=\\int_S \\vec{B}.d\\vec{S}' }] |
| !Faradayův zákon |
| At line 24 changed 1 line. |
| |[{Math fontsize='14' |
| [{LTMath fontsize='14' latex='\\nabla\\times\\vec{E} = - \\frac{\\partial \\vec{B}}{\\partial t}' }] |
| [{LTMath fontsize='14' |
| At line 26 changed 1 line. |
| \nabla\cdot\vec{D} = \rho_0 }] | [{Math fontsize='14' |
| \oint_{c} E\, dl=- \frac{d\Phi}{dt} }] |
| At line 28 changed 1 line. |
| \oint_{S} D\, dS=Q_0 }] |
| Magnetický indukční tok je definován jako: |
| At line 30 changed 1 line. |
| |[{Math fontsize='14' |
| [{LTMath fontsize='14' latex='\\Phi=\\int_S \\vec{B}.d\\vec{S}' }] |
| At line 32 changed 1 line. |
| \nabla\cdot\vec{B} = 0}] | [{Math fontsize='14' |
| !Gaussův zákon pro elektrostatické pole |
| At line 34 changed 1 line. |
| \oint_{S} B\, dS=0 }] |
| [{LTMath fontsize='14' latex='\\nabla\\cdot\\vec{D} = \\rho_0' }] |
| [{LTMath fontsize='14' latex='\\oint_{S} \\vec{D}\\, d\\vec{S}=Q_0' }] |
| At line 36 changed 1 line. |
| !!Materiálové vztahy |
| !Gaussův zákon pro magnetické pole |
| At line 38 changed 1 line. |
| [{Math fontsize='14' latex='\\vec{J}=\\gamma \\vec{E}' }] |
| [{LTMath fontsize='14' latex='\\nabla\\cdot\\vec{B} = 0' }] |
| [{LTMath fontsize='14' latex='\\oint_{S} \\vec{B}\\, d\\vec{S}=0' }] |
| At line 40 changed 1 line. |
| !!Vlnová rovnice |
| !!Materiálové vztahy |
| At line 42 changed 1 line. |
| [{Math fontsize='14' |
| [{LTMath fontsize='14' latex='\\vec{J}=\\gamma \\vec{E}' }] |
| At line 44 removed 1 line. |
| \nabla\times(\nabla\times\vec{H}) = \nabla\times(\gamma . \vec{E}) + \nabla\times \left( \frac{\partial \vec{D}}{\partial t}\right) }] |
| At line 46 changed 1 line. |
| [{Math fontsize='14' |
| !!Poyntingův vektor |
| At line 48 changed 2 lines. |
| \nabla(\nabla . \vec{H})-\nabla^2\vec{H} |
| = \gamma . (\nabla\times\vec{E}) + \nabla\times \left( \frac{\partial}{\partial t}\varepsilon\vec{E}\right) }] |
| Poyntingův vektor vyjadřuje okamžitou hodnotu plošné hustoty výkonu. Směr vektoru [{LTMath fontsize='12' latex='\\vec{S}'}], který |
| je kolmý na [{LTMath fontsize='12' latex='\\vec{E}'}] a [{LTMath fontsize='12' latex='\\vec{H}'}] , udává směr toku energie. Je definován jako |
| At line 51 changed 1 line. |
| [{Math fontsize='14' |
| [{LTMath fontsize='12' |
| At line 53 changed 2 lines. |
| \underbrace{\nabla(\nabla . \frac{\vec{B}}{\mu})}_0-\nabla^2\vec{H} |
| = \gamma . \left(-\frac{\partial\vec{B}}{\partial t}\right) + \varepsilon . \frac{\partial}{\partial t}(\nabla\times\vec{E}) }] |
| \vec{S}=\vec{E}\times\vec{H} }] |
| At line 56 removed 11 lines. |
| [{Math fontsize='14' |
|
| -\nabla^2\vec{H} = - \gamma . \mu . \frac{\partial\vec{H}}{\partial t} |
| - \varepsilon . \mu . \frac{\partial^2\vec{H}}{\partial t^2} }] |
|
| [{Math fontsize='14' |
|
| \nabla^2\vec{H} = \gamma . \mu . \frac{\partial\vec{H}}{\partial t} |
| + \varepsilon . \mu . \frac{\partial^2\vec{H}}{\partial t^2} }] |
|
|