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1 The state variables of humid air, Mollier diagram and appli-

cations

1.1 Basic concepts

Humid air is a mixture of dry air and water vapor. Dry air means a mixture of all the gasses in the
air (nitrogen, oxygen, carbon dioxide, and noble gasses) excluding water vapor.

The molar mass of dry air depends on its composition but for so called standard air is itMda = 0.028964
kg/mol, for which in calculations we often use an approximation Mda ≈ 0.0290 kg/mol. The molar
mass of water vapor (and water) is Mv = 0.0180153 kg/mol, for which the approximation used in
calculations is Mv ≈ 0.0180 kg/mol.

According to the ideal gas law, the partial density of dry air in humid air is

ρda =
pdaMda

RT
, (1)

where pda is the partial pressure of the dry air and R is the gas constant. To the best of our current
knowledge, the gas constant is [1]

R = (8.31441± 0.00026) J/molK. (2)

In practice, we use R = 8.314J/molK. The partial density of water vapor in humid air is

ρv =
pvMv

RT
, (3)

where pv is the partial pressure of the water vapor. The density of humid air is the sum of the partial
densities of the dry air and the water vapor

ρ = ρda + ρv (4)

and the pressure of the humid air is the sum of the partial pressures of the dry air and the water vapor

p = pda + pv. (5)

Let us denote the amount of dry air in volume V with mda (ρda = mda/V ) and the amount of water
vapor with mv (ρv = mv/V ). The absolute humidity of air is de�ned as the ratio between the mass of
the vapor and the mass of dry air

x ≡ mv

mda
. (6)

We can also write this by using the partial densities as

x ≡ ρv
ρda

. (7)

The moisture content is a dimensionless number but usually a �dimension� from the de�nition in Eq.
(6) is attached to it. We can write either x = 0.05 or x = 0.05kgH2O/kgda. Based on Eqs. (1), (3),
and (5), we can also write the absolute humidity by using only the pressures

x =
Mv

Mda

pv
pda

= 0.6220
pv
pda

= 0.6220
pv

p− pv
. (8)
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Solving this for the partial pressure of the water vapor, we obtain

pv =
x

0.6220 + x
p. (9)

Humid air can be seen as a mixture of dry air and water vapor. If the mixture is ideal, the enthalpy
is1

H = mdahda +mvhv, (10)

where the hda and hv are the speci�c enthalpies (J/kg) of dry air and water vapor, respectively.

Technical calculations for humid air are easiest to be done by using the �ow of dry air because it
remains constant despite the changes in the amount of water vapor. It is useful the de�ne enthalpy

hk ≡
H

mda
, (11)

where we have divided the enthalpy of the humid air by the mass of the dry air. The dimension of
the enthalpy hk is J/kg but it is often written as J/kgda as a reminder that the total enthalpy of the
mixture is given per one kilogram of dry air.

Combining Eqs. (10) and (11) yields

mdahk = mdahda +mvhv,

from which, by using Eq. (6), we get

hk = hda + xhv. (12)

In applications with a low enough pressure (total pressure at the most 1 bar), water vapor and dry air
can be treated as ideal gasses like done in Eqs. (1) and (3). For ideal gasses the speci�c enthalpy is
only a function of temperature

hda = hda(T )

and

hv = hv(T ).

When the zero point of enthalpy for dry air is chosen to be 0 oC dry air and for water vapor 0 oC
water, the enthalpies of dry air and water vapor can be obtained from the following equations

hda(T ) =

ˆ T

273.15K

cpda(T )dT (13)

hv(T ) = lho +

ˆ T

273.15K

cpv(T )dT, (14)

where cpda(T ) and cpv(T ) are the speci�c heats (J/kgK) of dry air and water vapor, respectively, and

1Eq. (10) formally holds also for non-ideal mixtures. Then hda and hv are partial enthalpies, which depend,
in addition to the temperature and the pressure, on the mixture ratio of the dry air and water vapor (i.e. the
moisture content).
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lho is the heat of evaporation of water at a temperature of 0 oC. The value of the evaporation heat is

lho = 2501 kJ/kg.

The speci�c heats cpda and cpv depend somewhat on the temperature. In the temperature range of
−10 oC. . . 40oC, the average values of the speci�c heats are

cpda = 1.006 kJ/kg
o
C

cpv = 1.85 kJ/kg
o
C.

At a temperature of 50oC, they are cpda = 1.008 kJ/kg
o
C and cpv = 1.87 kJ/kg

o
C. Using the above

average values, the enthalpy of humid air in Eq. (12) can be written in the form

hk = 1.006t+ x (2501 + 1.85t) , kJ/kg (15a)

where t is the temperature in Celsius degrees. We can also of course write Eq. (15a) without substi-
tuting the average numbers as

hk = cpdat+ x (lho + cvt) . (15b)

We denoted the amount of dry air in volume V with mda, that is ρda = mda/V , and the amount of
water vapor with mv, that is ρv = mv/V . In practice, we usually deal with the volume �ow V̇ (m3/s)
instead of the volume V , because in general application the volume �ow is usually a know parameter
for example in an inlet of a fan. The volume �ow V̇ expresses the total air �ow including both the dry
air and the water vapor and it might not remain constant throughout the system as the pressure and
the temperature may vary. Therefore, calculations are usually done by using mass �ow, and because
the humidity might often change, it is most convenient to use the mass �ow of dry air ṁda (kgda/s).
If for example we know the volume �ow V̇ at a fan inlet, the mass �ow of dry air going through the
fan is

ṁda = ρdaV̇ , (16)

where ρda is the partial density of dry air at the inlet of the fan. Similarly, for the mass �ow of water
vapor we have that

ṁv = ρvV̇ , (17)

where ρv is the partial density of the water vapor. Using the Eqs. (16) and (17), we can write based
on the de�nition of the moisture content Eq. (6) that

ṁv = xṁda. (18)

When determining the energy balance of a system, we need the enthalpy �ow of humid air Ḣ, which
based on Eqs. (10) and (18) can be written as

Ḣ = ṁdahda + ṁvhv = ṁda (hda + xhv)

or in a shorter form by using the de�nition (11) as

Ḣ = ṁdahk. (19)

In later examples, where we will be calculating energy balances, we will be using the Eq. (19).
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Example 1. At an inlet of a fan, the temperature of air is 15 oC and the volume �ow is 0.5m3/s.
What is the mass �ow of dry air ṁda at the inlet, when the moisture content of the air is x = 0.009
and the pressure is p = 1.0 bar?

The partial pressure of water vapor can be obtained from Eq. (3):

pv =
0.009

0.6220 + 0.009
· 1.0 bar = 0.01426 bar.

The partial pressure of dry air is pda = (1.0− 0.01426) bar = 0.986 bar = 0.986 · 105 Pa. The partial
density of dry air is then solved from Eq. (1):

ρda =
0.986 · 105 Pa · 0.0290 kg/mol

8.314 J/molK · (273.15015)K
= 1.194 kgda/m

3.

Thus the mass �ow of dry air from Eq. (16) is

ṁda = 1.194 kgda/m
3 · 0.5m3/s = 0.597 kgda/s.

The mass �ow of water vapor through the fan is then

ṁv = xṁda = 0.009 · 0.597 kgda/s = 0.005373 kgH2O/s.

1.2 The vapor pressure of water in the presence of dry air

The equilibrium between water and humid air is illustrated in Fig. 1.

Figure 1: The equilibrium between water and water vapor in the presence of dry air.

The situation in Fig. 1 di�ers from an equilibrium between water and pure water vapor, as there is
also inert gas, dry air, in the gas phase. The presence of dry air a�ects the situation because the water
pressure equals the total pressure of the gas p = pda + pv, making it di�er from the pressure of the
water vapor pv.

In equilibrium, the chemical potentials of water and water vapor are equal

µw(T, p) = µv(T, pv), (20)

where subscript w is for water and v for water vapor. Note that p = pda + pv. In principle, we can
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solve the partial pressure of the water vapor ph from Eq. (20). We notice that it depends on the
temperature and the partial pressure of the dry air

pv = pv(T, pda). (21)

We will now proof that to a very good accuracy

pv = pv(T ) (22)

meaning that the dependency of the partial pressure of the water vapor on the partial pressure of the
dry air is very small. We can proof this by di�erentiating Eq. (20)

∂µw
∂T

dT +
∂µw
∂p

dp =
∂µv
∂T

dT +
∂µv
∂pv

dpv. (23)

On the other hand it holds that

∂µw
∂T

= −sw,
∂µv
∂T

= −sv
∂µw
∂p

= vw,
∂µv
∂p

= vv, (24)

where sw and sv are the speci�c entropies of liquid water and water vapor, respectively, and vw and
vv the speci�c volumes with the same labeling. Note that vv = 1/pv. Substituting the Eq. (24) into
the Eq. (23) we get that

−swdT + vwdp = −svdT + vvdpv,

from which follows that

dpv =
sv − sw
vv

dT +
vw
vv
dp. (25)

On the other hand, because µ = h− Ts, based on the equilibrium condition (20) it holds that

hw − Tsw = hv − Tsv,

from which

sv − sw =
hv − hw

T
.

Substituting this into Eq. (25) yields

dpv =
hv − hw
Tvv

dT +
vv
vw
dp. (26)

Then substituting the di�erential of the total pressure

dp = dpda + dpv

into Eq. (26), we �nally get that

dpv =
hv − hw

T (vv − vw)
dT +

vw
vv − vw

dpda. (27)

The Eq. (27) di�ers from the Clapeyron equation by the second term, which is absent in the Clapeyron
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equation. If pda = 0, then dpda = 0, and the Eq. (27) coincides with the Clapeyron equation as it
should.

By taking into account that vv � vw and vv = 1/pv, and by using the Eq. (3), we can write an
approximative form for the Eq. (27)

dpv
pv

=
Mv (hv − hw)

RT 2
dT +

Mvvv
RT

dpda. (28)

On the other hand

dpv
pv

= d (lnpv) ,

and thus by using the Eq. (28) we can write(
∂ (lnpv)

∂T

)
pda

=
Mv (hv − hw)

RT 2
(29)

(
∂ (lnpv)

∂pda

)
T

=
Mvvw
RT

(30)

The speci�c volume of water is approximately vw = 10−3m3/kg and therefore at a temperature of 50
oC, we get from the Eq. (30) an estimate(

∂ (lnpv)

∂pda

)
T

=
0.0180 · 10−3

8.314 · 323.15

1

Pa
= 6.70 · 10−9

1

Pa
.

By integrating the Eq. (30) and using the above value, we can estimate the e�ect of the air pressure
the the vapor pressure. When the partial pressure of dry air is pda = 0 Pa and when it is pda = 105 Pa
at a temperature of 50 oC we get that

ln
pv

(
50 oC, pda = 105Pa

)
pv (50 oC, pda = 0)

= 6.70 · 10−9
1

Pa

(
105 − 0

)
Pa = 6.70 · 10−4

thus

pv
(
50 oC, pda = 105Pa

)
pv (50 oC, pda = 0)

= e6.70·10
−4

= 1.0006702.

When pda = 0, saturated water vapor is in equilibrium with water and there is no dry air. We can
read the corresponding vapor pressure from the vapor pressure table

pv (50 oC, pda = 0) = p′v (50 oC) = 0.12335 bar.

We denote the vapor pressure of saturated water2 at a temperature of T with p′v (T ). The vapor
pressure in the presence of dry air, when pda = 105 Pa, is

pv
(
50 oC, pda = 105 Pa

)
= 1.0006702 · 0.12335 bar = 0.12343 bar.

The di�erence between the vapor pressures is pv
(
50 oC, pda = 105 Pa

)
− pv (50 oC, pda = 0) = 8 Pa.

2The water at its boiling point is called saturated. The pressure of saturated water is the same as the vapor
pressure and it thus depends on the temperature.
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This shows that the vapor pressure of water depends only a little on the presence of dry air in the gas
phase3. By repeating the above calculation for di�erent temperatures, we can show that the vapor
pressure of water can be taken with a very good precision from the pressure table of saturated water
vapor, as if there is no dry air in the gas phase. To a good accuracy, the vapor pressure is only a
function of temperature and the Eq. (22) holds. Therefore, no new vapor pressure tables are necessary
for the calculations with humid air.

1.3 The vapor pressure of water and ice and the calculation of the state

variables of humid air

The partial pressure of vapor in air cannot be greater than the vapor pressure of saturated water p′v (T )
of the corresponding temperature T . If it would be greater, the water vapor would condensate until
an equilibrium corresponding the saturated vapor pressure would be reached.

The pressure of saturated vapor can be obtained from the vapor pressure tables (see e.g. [2]). An
approximation can be obtained from an equation [3]

log
p′v (t)

bar
= 28.59051− 8.2log

(
t
oC

+ 273.16

)
+0.0024804

(
t
oC

+ 273.16

)
− 3142.31

t
oC + 273.16

. (31)

The logarithm is the 10 base logarithm, the pressure is in the units of bar, and the temperature in the
units of Celsius.

Also a simpler approximative formula applies

p′v (T ) = p0exp

(
11.78

T − 372.79

T − 43.15

)
, (32)

where p0 = 105 Pa and the temperature is given in Kelvins.

When the temperature is below 0oC, the ice converts straight from solid to vapor i.e. sublimes. Then
the saturation pressure p′v is calculated based on the vapor pressure of air, for which an experimental
formula holds

log
p′v (t)

mbar
= 10.5380997− 2663.91

t
oC + 273.16

, (33)

where the temperature is in Celsius and the pressure in mbar.

Similarly to the water, we can write the Clayperon equation also for the vapor pressure of ice

dpv =
hv − hi

T (vv − vi)
dT, (34)

where hi is the enthalpy and vi the speci�c volume of ice.

3The amount of nitrogen, oxygen, and carbon dioxide in air also a�ects the vapor pressure. However, this
can usually be neglected as the e�ect is extremely small.
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The relative vapor pressure of air, that is the relative humidity, is de�ned as

ϕ =
pv

p′v (T )
, (35)

where pv is the partial pressure of water vapor in the air and p′v (T ) is the saturated vapor pressure at
a temperature of T . When ϕ = 1, that is 100 %, we say that the air is saturated.

Example 2. Let us calculate the properties of a) saturated air and b) air with a relative humidity of
ϕ = 50 %, when the total space{10mm}pressure is p = 1.0 bar and the temperature is 20 oC.

a) Saturated air, ϕ = 100 %

We obtain the saturated vapor pressure from the Eq. (31)

log
p′v (20 oC)

bar
= 28.59051− 8.2log (20 + 273.16)

+0.0024804 (20 + 273.16)− 3142.31

20 + 273.16
= −1.631

⇒ p′v (20 oC) = 10−1.631 bar = 0.0234 bar

Moisture content from the Eq. (8)

x = 0.6220
0.0234

1.0− 0.0234
= 0.0149 kgH2O/kgda

The densities ρda, ρv, and ρ from the Eqs. (1), (3), and (4), respectively

ρda =
(1.0− 0.0234) · 105 · 0.0290

8.314 · 293.15
= 1.162 kg/m3

ρv =
0.0234 · 105 · 0.0180

8.314 · 293.15
= 0.0173 kg/m3

Note that when you know one of the partial densities and the moisture content, you can calculate the
other one also by using the Eq. (7). The total density is then

ρ = (1.162 + 0.0173) kg/m3 = 1.179 kg/m3

The enthalpy of humid air is obtained from the Eq. (15a)

hk = 1.006 · 20 + 0.0149 · (2501 + 1.85 · 20) = 57.936 kJ/kgda

b) Humid air, ϕ = 50 %

From part a) we know that p′v (20 oC) = 0.0234 bar. Thus we can get the partial pressure of the vapor
from the de�nition of the relative humidity (35)

pv = 0.50 · 0.0234 bar = 0.0117bar
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The moisture content is

x = 0.6220
0.0117

1− 0.0117
= 0.00720 kgH2O/kgda

The densities are obtained as in part a)

ρda =
(1− 0.0117) · 105 · 0.0290

8.314 · 293.15
= 1.176 kg/m3

ρv = xρda = 0.00720 · 1.176 kg/m3 = 0.00847 kg/m3

ρ = (1.176 + 0.00847) kg/m3 = 1.184 kg/m3

And �nally the enthalpy

hk = 1.006 · 20 + 0.00720 · (2501 + 1.85 · 20) = 38.394 kJ/kgda

Example 3. Now let us calculate the same thing but with a total pressure of p = 0.825 bar.

Saturated air, ϕ = 100 %

p′v (20 oC) = 0.0234bar

x = 0.6220
0.0234

0.825− 0.0234
= 0.0182 kgH2O/kgda

ρda =
(0.825− 0.0234) · 105 · 0.0290

8.314 · 293.15
= 0.954 kg/m3

ρv = xρda = 0.0174 kg/m3

ρ = (0.954 + 0.0174) kg/m3 = 0.971 kg/m3

The enthalpy of humid air is obtained from the Eq. (15a)

hk = 1.006 · 20 + 0.0182 · (2501 + 1.85 · 20) = 66.312 kJ/kgda

b) Humid air, ϕ = 50 %

From part a) we know that p′v (20 oC) = 0.0234 bar. Thus we can get the partial pressure of the vapor
from the de�nition of the relative humidity (35)

pv = 0.50 · 0.0234 bar = 0.0117bar

The moisture content is

x = 0.6220
0.0117

1− 0.0117
= 0.00784 kgH2O/kgda
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The densities are obtained as in part a)

ρda =
(1− 0.0117) · 105 · 0.0290

8.314 · 293.15
= 1.176 kg/m3

ρv = xρda = 0.00784 · 1.176 kg/m3 = 0.00922 kg/m3

ρ = (1.176 + 0.00922) kg/m3 = 1.185 kg/m3

And �nally the enthalpy

hk = 1.006 · 20 + 0.00784 · (2501 + 1.85 · 20) = 40.018 kJ/kgda.

By comparing the results of example 2 to the results of the example 3, we notice that the total pressure
of the air a�ects the moisture content x, the partial density of dry air ρda, the total density ρ, and the
enthalpy hk. Knowing the total pressure is therefore relevant when calculating the thermodynamic
properties of humid air.

The pressure and moisture content have also an e�ect on the mass �ows. Let us continue the examples
2 and 3 by assuming that the volume �ow of humid air at the fan inlet is 0.8 m3/s. What is then the
dry air �ow and the vapor �ow at the fan inlet in all the di�erent cases?

Example 2 a), ϕ = 100 %:

ṁda = ρdaV̇ = 1.162 kg/m3 · 0.8m3/s = 0.930 kgda/s

ṁv = ρvV̇ = 0.0173 kg/m3 · 0.8m3/s = 0.014 kg/s

Example 2 b), ϕ = 50 %:

ṁda = 1.176 kg/m3 · 0.8m3/s = 0.941 kgda/s

ṁv = 0.00847 kg/m3 · 0.8m3/s = 0.00678 kg/s

Example 3 a), ϕ = 100 %:

ṁda = 0.954 kg/m3 · 0.8m3/s = 0.763 kgda/s

ṁv = 0.0174 kg/m3 · 0.8m3/s = 0.0139 kg/s

Example 3 b), ϕ = 50 %:

ṁda = 1.176 kg/m3 · 0.8m3/s = 0.941 kgda/s

ṁv = 0.00922 kg/m3 · 0.8m3/s = 0.00738 kg/s

We can see that the mass �ows (also the total mass �ow) di�er in di�erent cases. Note that you can
also get the mass �ow of vapor by multiplying the dry air mass �ow with the moisture content (see
Eq. (18)). When writing the energy balance, the quantity being used is the dry air mass �ow ṁda.
The e�ect of moisture is taken into account in the enthalpy hk as shown in the Eq. (12).
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1.4 Drawing of a Mollier diagram

The properties of humid air are usually illustrated with a Mollier diagram. A single air pressure is
chosen for a single Mollier diagram. Usually the Mollier diagram is drawn for the standard atmospheric
pressure

p = 1.013 bar = 760 mm Hg = 1 atm.

As seen in the previous examples 2 and 3, we can only use the Mollier diagram when the pressure is
the same (or approximately same) that was used in the drawing of the diagram.

The x-axis of a Mollier diagram is the moisture content x. Let us draw an equally spaced scale on the
x-axis. Then draw an another axis at an 45o angle to the x-axis for the enthalpy hk = lho · x (kJ/kg).
Thus the hk-axis is also equally spaced.4 The result is illustrated in Fig. 2.

Figure 2: Example of a Mollier diagram.

Now let us draw the isotherms to the diagram

t = 0 oC, hk = cpdat+ x (cpvt+ lho) = xlho = 2501x, kJ/kg.

Note that the hk-scaling was constructed by using the equation hk = lhox = 2501x. Therefore, the
isotherm t = 0 oC lies on top of the x-axis. The isotherms with t = t1 6= 0 are obtained from

t = t1, hk = cpdat1 + x (cpvt1 + lho) = 1.006t1 + x (1.85t1 + 2501) , kJ/kg.

The isotherms t1 are straight lines in the diagram. Due to the term cpvt1, they are not quite parallel.
When t1 < 0 oC, the isotherms are declining and when t1 > 0 oC, the isotherms are ascending. The
isotherms cross the y-axis at x = 0, that is hk = cpdat. When cpda is a constant, the temperature scale
on the y-axis is also equally spaced. The isotherms are illustrated in Fig. 3.

4Mollier diagrams can be drawn in many di�erent ways. You can choose the direction of the hk-axis and
the scale di�erently. The illustration here is of a conventional way of drawing a Mollier diagram.
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Figure 3: The basic scales of a Mollier diagram.

Adding a saturation curve (ϕ = 100%) and other relative humidity (ϕ) curves completes the above
Mollier diagram.

Example 4. Drawing of a Mollier diagram for air at a total pressure of 875 mbar.

First draw the hk-x coordinate system as instructed above and add the temperatures to the y-axis by
using the equation

hk = cpdat+ x (cpvt+ lho) = cdat = 1.006t, kJ/kg.

For example when t = −5oC, hk = −5.03 kJ/kg and when t = 5oC, hk = 5.03 kJ/kg. The isotherms
are equally spaced at the y-axis.

Then draw the saturation curve into the diagram. The vapor pressures can be calculated from the Eqs.
(31) and (33) or they can be read from a vapor pressure table. The moisture content x′ corresponding
to the saturated vapor pressure p′v (t) can be obtained from the Eq. (8) (with p = 0.875 bar). The
enthalpy of humid air from the Eq. (12) is

h′k = 1.006t+ x′ (1.85t+ 2501) , kJ/kg.

Now we can draw the saturation curves corresponding to di�erent temperatures t by calculating the
enthalpies h′k with di�erent moisture contents x′ with the given t. Simultaneously the end points of the
isotherms are determined. The curves corresponding to the di�erent relative humidities ϕ1, ϕ2, . . . can
be drawn by calculating the corresponding moisture contents and using the already existing isotherms.

With high temperatures, the values for x′ do not �t into the diagram unless we signi�cantly extend
the x-axis. Then it is useful to calculate the hk-values for smaller values of x with a smaller relative
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humidity to be able to draw the isotherms into the diagram. Values calculated with x′ and x = x50%
are listed in the Table 1.

ϕ = 100 % ϕ = 100 % ϕ = 50 % ϕ = 50 %
t/oC p′v/bar x′ h′k/kJ/kg x50% hk/kJ/kg
-10 0.00260 0.00185 -5.47 0.000925
-5 0.00402 0.00287 2.12 0.001432
0 0.00611 0.00437 10.93 0.00218
5 0.00872 0.00626 20.7 0.00311
10 0.01227 0.00885 32.4 0.00439
15 0.01704 0.01235 46.3 0.00612
20 0.0234 0.01709 63.5 0.00843 41.5
25 0.0317 0.0234 84.8 0.01147 54.4
30 0.0424 0.0317 111.2 0.01544 69.7
35 0.0562 0.0427 144.8 0.0206 88.1
40 0.0738 0.0573 187.8 0.0274 110.8

Table 1: Values for the drawing of the Mollier diagram with a total pressure of p = 0.875 bar.

By following the above instructions and using the values given in the Table 1 for the saturation curves
we can now draw the full Mollier diagram. The result is illustrated in the Fig. 4.

Commonly used Mollier diagrams are illustrated in the Figs. 4-7. The diagram in the Fig. 5 holds
for a total pressure of p = 1 bar and is used in problems concerning air conditioning technology.
The Fig. 6 is the American version of the Fig. 5. It is the same diagram except with an inverted
temperature scale. The diagram in the Fig. 7 covers a large range of temperatures and is therefore
suitable for applications in process engineering. A diagram of the same type as in the Fig. 7 can be
used for example in the designing of the drying part of a paper machine. In Fig. 7 the enthalpy is
in the horizontal axis and the lines of constant enthalpy are vertical lines. The curves f are curves
of moisture ratios de�ned as f = x/x′ (t), where x′ (t) is the moisture content of saturated air at a
temperature of t. The moisture ratio f and the relative humidity ϕ are di�erent things and should
not be mixed up.
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Figure 4: A Mollier diagram with a total pressure of p = 0.875 bar.
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Figure 5: A Mollier diagram commonly used in problems concerning air conditioning technology. The
total pressure in the diagram is p = 1 bar. Note that the notation in this �gure does not completely
coincide with the text. The used symbols are explained in the above �gure.
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Figure 6: The American version of the diagram shown in the Fig. 5. The temperature scale is inverted.
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Figure 7: A Mollier diagram with a Salin-Soininen perspective transformation.
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1.5 Determining the air humidity

The humidity of air can be measured either by determining the dew point or the wet bulb temperature
of the air.

The dew point is the temperature of the saturated vapor at which it has the same vapor pressure as the
ambient humid air. When the total pressure is a constant, then the vapor pressure being a constant
also means that the moisture content is a constant. In other words, the dew point is the temperature
of the saturated vapor at which it has the same moisture content as the humid air. One can measure
the dew point by cooling a surface down to a temperature at which water starts to condense on it.
Then by measuring the temperature of the surface we can determine the dew point. Together with a
measurement of the air temperature we can then determine the state of the air.

Example 5. The air temperature is 20 oC and the dew point is 8 oC. What is the relative humidity
of the air?

p′v (20 oC) = 0.0234 bar

pv = p′v (8 oC) = 0.01072 bar

Thus

ϕ =
pv

p′v (20 oC)
= 0.458 = 45.8 %.

Example 6. The air pressure is 950 mbar. The temperature of a room is 20 oC and the relative
humidity is ϕ = 40 %. What is the dew point of the room air?

p′v (20 oC) = 0.0234 bar

pv = 0.4 · 0.0234 bar = 0.00936 bar

We can look up the result from the tables: p′v (t1) = 0.00936 bar corresponds to a temperature of
t1 = 6.0oC. The total pressure doesn't a�ect the result.

If we want to read the result from the Mollier diagram, we need to �nd the crossing of the line
corresponding the to moisture content

x = 0.6620
0.00936

0.950− 0.00936
= 0.00659

and the saturation curve corresponding ϕ = 40 %. From there we can read the dew point temperature.
To be precise, we should use a Mollier diagram drawn with a total pressure of p = 950 mbar, but we
can get a decent approximation from the diagram with the total pressure of p = 1 bar.

When a moist cloth is placed into an air �ow, it will after awhile reach an equilibrium temperature.
This equilibrium temperature is known as the wet bulb temperature (twb) and it is determined by the
heat and mass transfer of the system. If we neglect the heat �ow radiating and conducting into the
cloth, we can write the heat balance of the cloth in a stationary situation as

α (t− twb) = ṁvl (twb) , (36)

where t is the temperature (oC) of the air �ow, ṁv the evaporation rate
(
kg/m

2
s
)
from the cloth,
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l (twb) the heat of evaporation of water (J/kg) at the temperature of twb
5 (oC), and α is the convective

heat-transfer coe�cient
(
W/m

2 oC
)
.

For the evaporation rate of water from the cloth it holds that6 [4]

ṁv = Mv
p

RT
k ln

p− pv
p− p′v (twb)

, (37)

where k is the mass transfer coe�cient (m/s). The heat and mass transfer coe�cients relate via [4]

k =
α

ρcp
Le1−n, (38)

where the power n is between 0.33 . . . 0.5 and

ρcp = ρvcpv + ρdacpda, J/m
3 oC (39)

is the heat capacity of humid air. The dimensionless number Le is the so called Lewis number (in
Russian literature the Luikov number) and it is de�ned as

Le =
ρcpD

λ
, (40)

where D is the di�usion coe�cient of water vapor in air
(
m2/s

)
and λ is the thermal conductivity of

humid air (W/m
o
C). The thermodynamic properties of saturated humid air are listed in the Table 2,

where you can �nd e.g. the di�usion coe�cient and the thermal conductivity.7

Substituting the Eqs. (37) and (38) into the Eq. (36) yields

t− twb =
Mv

ρcp

p

RT
Le1−nl (twb) ln

p− pv
p− p′v (twb)

. (41)

Note that the heat-transfer coe�cient α has disappeared from the Eq. (41) and the only term that
depends on the air �ow conditions of the system is the power n8 in the Lewis number. Because the
Lewis number is close to one, the dependence of the air �ow conditions is very small.

When the state of the air, the temperature t, and the partial vapor pressure pv are known, the wet
bulb temperature can be obtained from the Eq. (41). Inversely, if the temperature t and the wet bulb
temperature twb are known, we can solve the partial vapor pressure pv from the Eq. (41) and thus the
air humidity.

5The temperature dependence of the heat of evaporation for water is

l (twb) = lho − (cpw − cpv) twb = 2501− (4.186− 1.85) twb = 2501− 2.34twb, kJ/kg.

6T is the average absolute temperature at the boundary layer. In practical calculations we use T =
(t+ twb) /2 + 273.17 K.

7For comparison, there is a Table 3 on page 24 of thermodynamic properties of dry air. In the Table 2,
the zero point of enthalpy is set at 0 oC whereas in the Table 3 the zero point is set at 0K = −273.15 oC. For
calculations with humid air, we always use the Table 2.

8The power n is the same as the power of the Prandtl (Pr) number in the heat-transfer equation Nu =
ARemPrn, where Nu is the Nusselt number, A the cross-sectional area, and Re the Reynolds number. n
depends on the air �ow conditions of the system.
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Example 7. The air temperature is t = 20 oC and the wet bulb temperature is twb = 10 oC. What is
the moisture content of the air when the air pressure is a) p = 1 bar and b) p = 0.9 bar?

Solving the vapor pressure pv from the Eq. (41) gives

p− pv = (p− p′v (twb)) exp

[
(t− twb)

ρcp
Mv

RT

p

1

Le1−n
1

l (twb)

]
. (42)

The di�usion coe�cient D in the Lewis number is inversely proportional to the total pressure

D =
1

p
f (T ) . (43)

At a temperature of 10 oC and a pressure of p = 1 bar, the di�usion coe�cient from the Table 2 is
D (10 oC, p = 1 bar) = 23.3 · 10−6m2/s. With the same temperature and the pressure p = 0.9 bar, the
di�usion coe�cient can be obtained from the Eq. (43) D (10 oC, p = 0.9 bar) = 25.9 · 10−6m2/s.

On the other hand, an inverse proportionality like in Eq. (43) also holds for the di�usion coe�-
cient with the heat-transfer coe�cient. With a good accuracy D/λ = g (T ) . From the Table 2,
λ (10 oC, p = 1 bar) = 0.02466 W/mK and thus D/λ = 9.45 · 10−4 m3K/J.

The evaporation heat and the saturated vapor pressure can be obtained from the Table 2

l (twb) = l (10 oC) = 2477 · 103 J/K

p′v (twb) = p′v (twb) = 0.01227 bar.

The temperature T in the Eq. (42) is taken as the average temperature at the boundary layer (see
Footnote 6)

T =

(
20 + 10

2
+ 273.15

)
K = 288.15 K.

For the heat capacity

ρcp = ρdacpda + ρvcpv = ρda (cpda + xcpv) (44)

we would have to �nd an iterative solution as the vapor pressure pv and therefore the moisture content
x are unknown at this point. When the moisture content is small enough, as in this example, we
can approximate that ρcp ∼= ρdacda. For a more exact solution, we would have to then repeat the
calculation with the vapor pressure from the Eq. (42) until a desired precision is reached. In this
example, we will settle for the result obtained with the above mentioned approximation for the heat
capacity.

When calculating the density and the heat capacity, we make an approximation ρ ∼= ρda or p ∼= pda
and cp ∼= cpda. From this follows that

ρcp
Mv

RT

p
∼=
Mda

Mv
cp ∼=

Mda

Mv
cpda, (45)

which as a numerical value is

Mda

Mv
cpda = 1617 J/kgoC.

Now from the Eq. (1), the partial density of air in a) and b) is
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a)

ρda =
pdaMda

RT
∼=
pMda

RT
=

105 · 0.029

8.314 · 288.15
= 1.211 kg/m

3

b)

ρda =
pdaMda

RT
∼=
pMda

RT
=

0.9 · 105 · 0.029

8.314 · 288.15
= 1.089 kg/m

3

The Lewis number is

a)

Le =
ρcpD

λ
∼= ρdacpda

D

λ
= 1.211 · 1006 · 9.45 · 10−4 = 1.151

Assuming that n = 0.5, Le1−n = 1.073.

b)

Le =
ρcpD

λ
∼= ρdacpda

D

λ
= 1.089 · 1006 · 9.45 · 10−4 = 1.035

and Le1−n = 1.017.

Substituting all the obtained values into the Eq. (42) gives

a)

p− pv = (1.0− 0.012271) exp

[
(20− 10) · 1617 · 1

1.073
· 1

2477.2 · 103

]
bar = 0.9938 bar

and thus

pv = (1.0− 0.9938) bar = 0.0062 bar = 620 Pa

and

x = 0.662
pv

p− pv
= 0.662

620

105 − 620
= 0.00413.

b)

p− pv = (0.9− 0.012271) exp

[
(20− 10) · 1617 · 1

1.017
· 1

2477.2 · 103

]
bar = 0.8934 bar

and thus

pv = (0.9− 0.8934) bar = 0.0066 bar = 660 Pa

and �nally

x = 0.662
pv

p− pv
= 0.662

660

0.9 · 105 − 660
= 0.00489.
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By comparing the a) and b) parts, we can notice that the pressure has a signi�cant impact on the
results. It is important that the e�ects of pressure are taken into account in industrial air conditioning
and process measurements, where there can be a partial vacuum or considerable overpressure compared
to the atmospheric pressure.

Next we derive an approximation for the Eq. (41) that can be used when the partial pressure of the
vapor is small compared to the total pressure. It holds with a relatively good accuracy that9

ln
p− pv

p− p′v (twb)
= ln

[
1 +

p′v (twb)− pv
p− p′v (twb)

]
∼=
p′v (twb)− pv
p− p′v (twb)

∼=
p′v (twb)

p− p′v (twb)
− pv
p− pv

.

Now using the Eq. (8), we get that

ln
p− pv

p− p′v (twb)
∼=
Mda

Mv
(x′ (twb)− x) , (46)

where x′ (twb) is the moisture content of saturated air corresponding to a temperature of twb and a
total pressure of p. Substituting the approximations from the Eqs. (45) and (46) into the Eq. (41)
yields

x′ (twb)− x
t− twb

=
cp

l (twb)

1

Le1−n
. (47)

For air the Lewis number is approximately 1 (see example 7), so to a good accuracy Le1−n ∼= 1.
Therefore the Eq. (47) simpli�es to

x′ (twb)− x
t− twb

=
cp

l (twb)
. (48)

Above we discussed to which temperature does a moist cloth set when it is considered to be thermally
isolated except from an air �ow. We also assumed that there is no radiant heat exchange between the
cloth and the air �ow. During this discussion, the state of the air �ow remained unchanged.

If the moisture from the cloth humidi�es the air adiabatically so much that the state of the air �ow
also changes, the moist cloth sets to a slightly di�erent temperature. There is a wet bulb temperature
twb for every state of air (t, x), which can be calculated from the Eq. (41) or from the approximation
(48), when the partial pressures are small compared to the total pressure. An interesting special case
is when the state of the air reaches the saturation curve. Then the temperatures of the air �ow and
the moist cloth are the same. This equilibrium temperature is known as the thermodynamic wet bulb
temperature or the adiabatic saturation temperature (tad).

When air is humidi�ed with a water �ow ṁw and when the ingoing and outgoing humid air �ows are
denoted as ṁ1 and ṁ2, respectively, we can write the energy balance of the humidifying chamber as

ṁ2h2 − ṁ1h1 = ṁwhw. (49)

The Eq. (49) is illustrated in the Fig. 8.

9Natural logarithm can be expanded as a Taylor series

ln (1 + x) =

∞∑
n=1

(−1)n+1

n
xn = x− x2

2
+

x3

3
+ . . . ,

when |x| ≤ 1 unless x = −1. If x is small, we can estimate that ln (1 + x) ∼= x.
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Figure 8: The energy balance of an adiabatic humidifying chamber. Here φ is net thermal power going
into the system and Ẇm is the net work done by the system into the environment.

In the Eq. (49) the incoming enthalpy �ow of the humid air is

ṁ1h1 = ṁda,1hda,1 + ṁv,1hv,1 (50a)

and the outgoing is

ṁ2h2 = ṁda,2hda,2 + ṁv,2hv,2. (50b)

Because the �ow of dry air remains unchanged, it holds that

ṁda = ṁda,1 = ṁda,2, (51)

and thus we can rewrite the enthalpy �ows in the Eqs. (50a) and (50b) as10

ṁ1h1 = ṁdahk,1 (52a)

ṁ2h2 = ṁdahk,2, (52b)

where

hk,1 = hda,1 + x1hv,1 (53a)

hk,2 = hda,2 + x2hv,2 (53b)

as seen in the Eq. (12). When all the water supplied into the humidifying chamber is evaporated, the
following humidity balance holds

ṁw = ṁv,2 − ṁv,1 = ṁda (x2 − x1) . (54)

Substituting the Eqs. (52a) and (52b) into the Eq. (54) yields

∆hk
∆x

= hw, (55)

where ∆hk = hk,2 − hk,1 and ∆x = x2 − x1.

When air is adiabatically humidi�ed with water of a temperature of tad, the enthalpy of water is

hw = cpwtad. (56)

10Note that the moisture content x ≡ mv
mda

expressed with the mass �ows is x = ṁv
ṁda

.
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If the air is humidi�ed such that it reaches a saturated state corresponding to the temperature of tad,
we denote

hk,2 = hk,ad

x2 = xad. (57)

Using the notations (57), we can drop the subscript 1 and write that x1 = x and hk,1 = hk. We can
now rewrite the Eq. (55) by using the above notation and the Eq. (56) as

hk − hk,ad
x− xad

= cpwtad. (58)

The state moves along a line in the Mollier diagram, where the enthalpy and the moisture content are
determined by the Eq. (58). This is illustrated in the Fig. 9.

The Eq. (58) can be formally written in a form resembling the Eq. (48). To see this, let us �rst write
the Eq. (58) as

hk − hk,ad − cpwtad (x− xad) = 0.

On the other hand,

hk = cpdat+ x (cpvt+ lho)

and

hk,ad = cpdatad + xad (cpvtad + lho) .

Substituting these to the above equation we can rewrite it as

(cpda + xcpv) (t− tad) + (x− xad) (lho + cpvtad − cpwtad) = 0. (59)

Figure 9: The change of the state of air in adiabatic humidifying. A denotes the initial state and B
the �nal saturated state.
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The heat of evaporation of water at a temperature of tad is

l (tad) = lho + cpvtad − cpwtad (60)

and the speci�c heat of humid air per kgda is

cpk = cpda + xcpv. (61)

Substituting the Eqs. (60) and (61) into the Eq. (59) yields

xad − x
t− tad

=
cpk
l (tad)

, (62)

which is equivalent with the Eq. (58).

The Eq. (62) is almost the same as the approximative equation (48) derived for the wet bulb tem-
perature. When the partial vapor pressure is small compared to the air pressure, that is the moisture
content is small, the speci�c heat of humid air per kgH2O and per kgda are approximately the same,
that is cp ∼= cpk. If the moisture content is small and Le ∼= 1, the adiabatic saturation temperature
(thermodynamic wet bulb temperature) tad is approximately the same as the �technical� wet bulb
temperature twb.

Example 8. In the Mollier diagram, starting from the 14 oC at the saturation curve, draw a) the line
along which the state moves during adiabatic humidifying and b) the guideline associated with the
wet bulb temperature measurement that can be used to de�ne the state. The air pressure is 1 bar.

p′v (14 oC) = 0.01597 bar (from the Table 2)

xad = 0.6620
0.01597

1.0− 0.01597
= 0.01009 = x′ (twb)

cpk = 1.006 + 0.01009 · 1.85 = 1.025 KJ/oCkgda

l (14 oC) = 24678 kJ/kg (from the Table 2)

ρda = 1.211 kg/m
3
(from the Table 2)

ρv = 0.01206 kg/m
3
(from the Table 2)

ρ = ρda + ρv = 1.223 kg/m
3

ρcp = ρdacpda + ρvcpv = 1.211 · 1.006 + 0.01206 · 1.85 = 1.241 kJ/m
3 oC

cp = 1.015 kJ/kgoC

D = 23.9 · 10−6 m2/s (from the Table 2)

λ = 0.0249 W/moC (from the Table 2)

Le =
Dρcp
λ

=
23.9 · 10−6 · 1241

0.0249
= 1.191

n ∼= 0.5
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a) Let us choose a point on the isotherm t = 25 oC to help with the drawing. From the Eq. (62)

xad − x =
1.025

2467.8
(25− 14) = 0.00457

we get the location of the point x = 0.01009− 0.00457 = 0.00552.

b) Similarly we get a point to help with the drawing of the line for the wet bulb temperature. From
the Eq. (47)

x′ (twb)− x =
1.015

2467.8

1

1.1910.5
(25− 14) = 0.00415

and thus x = 0.00594. The results are illustrated in the Fig. 10

Figure 10: The lines used to de�ne the state of air. M = the wet bulb temperature line, E = line of
constant enthalpy, and A = line of adiabatic humidifying.

The enthalpy of humid air at a temperature of 14 oC at the saturation curve is

hk,ad = 1.0016 · 14 + 0.01009 (1.85 · 14 + 2501) = 39.58 kJ/kg.

The moisture content corresponding to this enthalpy at a temperature of 25 oC is determined by

39.58 = 1.005 · 25 + x (1.85 · 25 + 2501) ,
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from which x = 0.00567.

Comparing the obtained value to the results of the Examples 6 and 7, we realize that the line of
constant enthalpy lies in between the line corresponding to the wet bulb temperature and the line of
adiabatic humidifying. The closer the Lewis number is to one the closer the wet bulb temperature and
the adiabatic humidifying temperature are to each other.

In practical calculations you can use the line of constant enthalpy as the wet bulb temperature guideline.
The crossing of the line of constant enthalpy and the isotherm, corresponding to the state of the
air, gives the humidity of the air. For more precise calculations you must use the Eq. (41) or it's
approximative form (47) if the vapor pressures (pv and p′v) are small enough compared to the total
pressure p.

As an example of using the Mollier diagram of the Fig. 7 to determine the state of air, we can take
a typical measurement from the exhaust hood of a paper machine. The temperature and the wet
bulb temperature of the extract air are 82 oC and 60 oC, respectively. In the Fig. 7, start from
the saturation curve at a temperature of 60 oC and move up along the line of constant enthalpy
(hk = 460 kJ/kgda) until you reach the isotherm t = 82 oC. The crossing point of the line of constant
enthalpy and the isotherm represents the state of the air. To the accuracy of the Fig. 7, x = 0.14
and f ≡ x/x′ (82 oC) = 0.20. Using the obtained x = 0.14 and p = 1.0 bar, we can calculate the
corresponding relative humidity ϕ. From the Eq. (9) we get pv = 0.183 bar and from the Table 2
p′v (82 oC) = 0.5133 bar. Therefore, from the de�nition (35), ϕ = pv/p

′
v (82 oC) = 0.358 = 35.8 %.

Notice that f and ϕ di�er notably.

Let us write the Eq. (48) in a numerical form when Le ∼= 1, l (twb) ∼= 2450 kJ/kg, and cv ∼= 1.0 kJ/kgoC.
With the given values, the Eq. (48) can be written as11

pv = p′v (twb)− 6.6 · 10−4 · p (t− twb)
1
oC
, (63)

from which the state of air can be quickly estimated. Usually the temperature of the air is referred to
as dry temperature to clearly separate it from the wet bulb temperature of the air.

Finally we should emphasize that especially in process measurements, the radiation can have a sig-
ni�cant e�ect on the wet bulb temperature. Therefore, the wet bulb temperature generally depends
also on the measurement device and the way of measuring. If the air �ow is really small, the radiation
may have a major e�ect in addition to the convective heat transfer. In principle, for each wet bulb
temperature measurement we can experimentally determine a formula analogous to the Eq. (63).

1.6 The changes of state of humid air

Let us study a balance boundary illustrated in the Fig. 11. The system can basically be any part of
the air around process equipment where there are humid air �ows. In air conditioning applications,
the balance boundary can for example consist of the inside of a room or an o�ce.

11The Eq. (63) actually follows from the Eq. (47) and the above logarithm approximation (46) when we
also notice that

6.6 · 10−4 (t− twb)
1
oC
� 1.
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Figure 11: Energy and moisture balance boundaries.

In a stationary state, the energy balance of the area inside the balance boundary is

φ− Ẇm = (ṁdahk2 − ṁdahk1) + [(ṁi2hi2 − ṁi1hi1)

+ (ṁw2hw2 − ṁw1hw1) + (ṁv2hv2 − ṁv1hv1)] , (64)

where φ is net thermal power going into the system, Ẇm is the net work done by the system into
the environment12, ṁw is the water �ow (1 = in�ow, 2 = out�ow), ṁi is the ice �ow, and ṁv is the
separate vapor �ow not included in the air �ows. The vapor �ows within the humid air are ṁdax1 and
ṁdax2 and they are taken into account in the terms hk1 and hk2.

Similarly, the humidity or the water balance is

ṁda (x2 − x1) = (ṁi1 − ṁi2) + (ṁw1 − ṁw2) + (ṁv1 − ṁv2) . (65)

In many cases, the in�ow and out�ow air can consist of multiple air �ows in di�erent states (temper-
ature, moisture content) and these must be handled separately. This means that the enthalpy �ows
must also be separated accordingly.

12The expansion work is not included in this term, since it is already taken into account in the enthalpy
terms.
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Example 9. Mixing of two air �ows.

(a) (b)

(c)

Figure 12: The mixing point in a Mol-
lier diagram. If the state ends up being
supersaturated (see Fig. c) to the point
3, the state point goes back to the satu-
ration curve to the point 4. In this pro-
cess, (x3 − x4) kgH2O/kgda of water con-
denses into the mixing chamber.

In this case, the energy balance is (see Fig. 12a)

ṁda1hk1 + ṁda2hk2 = ṁda3hk3 (66)

and the water balance is

ṁda1x1 + ṁda2x2 = ṁda3x3. (67)

For the dry air �ows it holds that

ṁda1 + ṁda2 = ṁda3. (68)

From the Eqs. (66)-(68) it follows that

hk3 − hk2
hk1 − hk3

=
x3 − x2
x1 − x3

=
ṁda1

ṁda2
, (69)
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which shows that the mixing point 3 is on the line connecting the points 1 and 2, and that the position
of the point 3 is obtained from the �lever rule� (ṁda1l1 = ṁda2l2, see Fig. 12b).

Example 10. Heating of an air �ow. From the Eq. (64) follows that

φ = ṁda (hk2 − hk1)

and from the Eq. (65) that

ṁda (x2 − x1) = 0

that is

x2 = x1.

During heating, the state of the air moves along a line of a constant moisture content.

Example 11. Cooling of an air �ow. From the energy balance (64)

φ = ṁda (hk2 − hk1) + ṁw2hw2,

where φ < 0. During the cooling, also water can condense and therefore the term ṁw2hw2 is present
in the above equation. Whether water condenses or not depends on the surface temperature of the
cooling radiator. From the water balance (65)

ṁda (x2 − x1) = −ṁw2

so the �nal moisture content is less or equal the initial one x2 ≤ x1. The cooling of an air �ow is
illustrated in Fig. 13.

When an air �ow encounters a surface with a temperature below the dew point, water condenses on
the surface. If all the air contacts the cold surface, the state of the air is at point 3 after the cooling.
In practice, part of the air does not contact the cold surface and thus the air after the cooling radiator
is a mixture of saturated air (3) and the air going past the cooling radiator (1). As shown in the
Example 9, the mixing point 2 is on the line connecting the points 1 and 3. The closer the point 2 is
to the point 3, the more e�ective the cooling radiator.
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Figure 13: The change of the state of air in a cooling radiator. If the surface temperature ts is below
the dew point td, water condenses during cooling. If ts > td, the cooling happens along the line of a
constant moisture content x1 = x2.

Example 12. Adding vapor into air. From the Eqs. (64) and (65) follows that

ṁvhv = ṁda (hk2 − hk1)

and

ṁv = ṁda (x2 − x1) ,

where ṁv is the added vapor �ow and hv its enthalpy. Combining the above equations yields

hk2 − hk1
x2 − x1

= hv. (70)

In di�erential form, the Eq. (70) is

dhk
dx

= hv. (71)

On the other hand, by di�erentiating Eq. (15b) with respect to t and x we get

dhk = (cpda + xcpv) dt+ (tcph + lho) dx,

which together with the Eq. (71) gives

dt

dx
=
hv − (lho − tcpv)
cpda + xcpv

=
hh − hh (t)

cpda + xcpv
, (72)

where hh (t) = lho + cpvt is the enthalpy of the vapor at a temperature of t.

We can see from the Eq. (72) that if the temperature of the vapor added into the air is lower than
the air temperature, the air cools down dt/dx < 0. If the temperature of vapor is greater than the
temperature of the air, the air warms up dt/dx > 0.
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Example 13. The temperature of a room needs to stay at 20 oC and the relative humidity at ϕ = 50
%. The total thermal power of the room is 2.45 kW and the total vapor �ow is 1.53 · 10−3 kg/s. What
needs to be the state (temperature and moisture content) of the inlet air when the inlet air �ow is a)
ṁda = 0.3 kg/s and b) ṁda = 0.6 kg/s?

p′v (20 oC) = 0.02337 bar pv = 0.5 · 0.02337 bar = 0.01169 bar

Thus the moisture content in the room is

x = 0.6220
0.01169

1.0− 0.01169
= 0.00736.

When the inlet air mixes into the room air properly, the moisture content and the temperature of the
outlet air are the same as the temperature t2 = 20 oC and moisture content x2 = 0.00736 of the room.
The enthalpy of the outlet air is then

hk2 = 1.006 · 20 + 0.00736 (2501 + 1.85 · 20) = 38.8 kJ/kg.

The enthalpy of the inlet air hk1 and its moisture content x1 are determined from the energy (64) and
the water balances (65)

ṁda (hk2 − hk1) = φ+ ṁvhv

ṁda (x2 − x1) = ṁv.

The total thermal power means that it also takes into account the enthalpy �ow ṁvhv. Thus

φ+ ṁvhv = 2.45 kW

and therefore

a)

hk2 − hk1 =
2.45

0.3
kJ/kg = 8.2 kJ/kg

hk1 = (38.8− 8.2) kJ/kg = 30.6 kJ/kg

b)

hk2 − hk1 =
2.45

0.6
kJ/kg = 4.1 kJ/kg

hk1 = (38.8− 4.1) kJ/kg = 34.7 kJ/kg.

The total vapor �ow is ṁv = 1.53 · 10−3 kg/s and thus

a)

x2 − x1 =
1.53 · 10−3

0.3
= 0.0051

x1 = 0.00736− 0.0051 = 0.00226

b)

x2 − x1 =
1.53 · 10−3

0.6
= 0.00255
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x1 = 0.00736− 0.00255 = 0.00481.

The corresponding temperatures are obtained from the following equation

t =
hk − xlho
cpda + xcpv

.

a) x = 0.00226 and hk = 30.6 kJ/kg

t =
30.6− 0.00226 · 2501

1.006 + 0.00226 · 1.85
= 24.4 oC

b) x = 0.00481 and hk = 34.7 kJ/kg

t =
34.7− 0.00481 · 2501

1.006 + 0.00481 · 1.85
= 22.2 oC.

The results are illustrated in the Fig. 14.
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Figure 14: The state line of the inlet air. a and b denote the two di�erent cases for the �nal state.
Note that the notation in this �gure does not completely coincide with the text. The used symbols
are explained in the above �gure.
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