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1 The state variables of humid air, Mollier diagram and appli-
cations

1.1 Basic concepts

Humid air is a mixture of dry air and water vapor. Dry air means a mixture of all the gasses in the
air (nitrogen, oxygen, carbon dioxide, and noble gasses) excluding water vapor.

The molar mass of dry air depends on its composition but for so called standard air is it My, = 0.028964
kg/mol, for which in calculations we often use an approximation My, ~ 0.0290 kg/mol. The molar
mass of water vapor (and water) is M, = 0.0180153 kg/mol, for which the approximation used in
calculations is M, =~ 0.0180 kg/mol.

According to the ideal gas law, the partial density of dry air in humid air is

pdaMda
Pda = RT (1)

where pg, is the partial pressure of the dry air and R is the gas constant. To the best of our current
knowledge, the gas constant is [1]

R = (8.31441 £ 0.00026) J /molK. (2)

In practice, we use R = 8.314J/molK. The partial density of water vapor in humid air is

_ puM,
Po="pr

(3)

where p, is the partial pressure of the water vapor. The density of humid air is the sum of the partial
densities of the dry air and the water vapor

P = pda + Pv (4)

and the pressure of the humid air is the sum of the partial pressures of the dry air and the water vapor

P = Pda + Do- (5)

Let us denote the amount of dry air in volume V' with mg, (pda = Mmae/V) and the amount of water
vapor with m, (p, = m,/V). The absolute humidity of air is defined as the ratio between the mass of
the vapor and the mass of dry air

My

(6)

Tr = .
Mda

We can also write this by using the partial densities as

c=Lv (7)
Pda

The moisture content is a dimensionless number but usually a “dimension” from the definition in Eq.
(6) is attached to it. We can write either = 0.05 or z = 0.05kgy.0/kgq,. Based on Egs. (1), (3),
and (5), we can also write the absolute humidity by using only the pressures

Mv Dov Doy Do
T = = 0.6220 = 0.6220 . 8
Mda Pda Pda P—DPv ( )



Solving this for the partial pressure of the water vapor, we obtain

T

T 06220+ 2 )

Py

Humid air can be seen as a mixture of dry air and water vapor. If the mixture is ideal, the enthalpy
ol
is

H = mdahda + mvhva (10)
where the hg, and h, are the specific enthalpies (J/kg) of dry air and water vapor, respectively.

Technical calculations for humid air are easiest to be done by using the flow of dry air because it
remains constant despite the changes in the amount of water vapor. It is useful the define enthalpy

H
hk = s (11)

Mda

where we have divided the enthalpy of the humid air by the mass of the dry air. The dimension of
the enthalpy hy, is J/kg but it is often written as J/kg,, as a reminder that the total enthalpy of the
mixture is given per one kilogram of dry air.

Combining Eqs. (10) and (11) yields

Maahr = Mdahda + My,
from which, by using Eq. (6), we get

hi = hqa + Thy. (12)
In applications with a low enough pressure (total pressure at the most 1 bar), water vapor and dry air
can be treated as ideal gasses like done in Egs. (1) and (3). For ideal gasses the specific enthalpy is
only a function of temperature

hda = hda (T)

and

When the zero point of enthalpy for dry air is chosen to be 0 °C dry air and for water vapor 0 °C
water, the enthalpies of dry air and water vapor can be obtained from the following equations

T
haa(T) = / Cpda(T)dT (13)
273.15 K
T
ho(T) = Iy + / cpo(T)dT, (14)
273.15K

where ¢4, (T") and ¢, (T) are the specific heats (J/kgK) of dry air and water vapor, respectively, and

'Eq. (10) formally holds also for non-ideal mixtures. Then hg, and h,, are partial enthalpies, which depend,
in addition to the temperature and the pressure, on the mixture ratio of the dry air and water vapor (i.e. the
moisture content).



lno is the heat of evaporation of water at a temperature of 0 °C. The value of the evaporation heat is
Iho = 2501 kJ/kg.

The specific heats cpqq and cp, depend somewhat on the temperature. In the temperature range of
—10 °C...40°C, the average values of the specific heats are

Cota = 1.006 kJ/kg°C
cpw = 1.85kJ/kg’C.

At a temperature of 50°C, they are cpq, = 1.008 kJ/kg”C and ¢, = 1.87 kJ/kg°C. Using the above
average values, the enthalpy of humid air in Eq. (12) can be written in the form

hi = 1.006t + 2 (2501 + 1.85¢) , kJ /kg (15a)

where t is the temperature in Celsius degrees. We can also of course write Eq. (15a) without substi-
tuting the average numbers as

hk = deat +x (lho + Cvt) . (15b)

We denoted the amount of dry air in volume V' with my,, that is pg, = ma./V, and the amount of
water vapor with m,, that is p, = m,/V. In practice, we usually deal with the volume flow 1%4 (m3/s)
instead of the volume V', because in general application the volume flow is usually a know parameter
for example in an inlet of a fan. The volume flow V expresses the total air flow including both the dry
air and the water vapor and it might not remain constant throughout the system as the pressure and
the temperature may vary. Therefore, calculations are usually done by using mass flow, and because
the humidity might often change, it is most convenient to use the mass flow of dry air rg, (kgda/s).
If for example we know the volume flow V at a fan inlet, the mass flow of dry air going through the
fan is

mda = pdava (16)

where pq, is the partial density of dry air at the inlet of the fan. Similarly, for the mass flow of water
vapor we have that

My = puV, (17)

where p, is the partial density of the water vapor. Using the Eqs. (16) and (17), we can write based
on the definition of the moisture content Eq. (6) that

Ty = T1Mgq. (18)

When determining the energy balance of a system, we need the enthalpy flow of humid air H, which
based on Egs. (10) and (18) can be written as

H = mdahda + mvhv = mda (hda + Ihv)
or in a shorter form by using the definition (11) as
H = 1igqhy,. (19)

In later examples, where we will be calculating energy balances, we will be using the Eq. (19).



Example 1. At an inlet of a fan, the temperature of air is 15°C and the volume flow is 0.5m?/s.
What is the mass flow of dry air 7hg, at the inlet, when the moisture content of the air is x = 0.009
and the pressure is p = 1.0 bar?

The partial pressure of water vapor can be obtained from Eq. (3):

0.009

= 7 0bar = 0.01426 bar.
0.6220 + 0.000 Vbar=0 ar

Py

The partial pressure of dry air is pg, = (1.0 — 0.01426) bar = 0.986 bar = 0.986 - 105 Pa. The partial
density of dry air is then solved from Eq. (1):

0.986 - 10° Pa - 0.0290 kg /mol

= =1.194k 3,
8.314J /molK - (273.15015) K Baa/1

Pda

Thus the mass flow of dry air from Eq. (16) is
Maa = 1.194kgy, /m> - 0.5m® /s = 0.597 kg, /s.
The mass flow of water vapor through the fan is then

Ty = T1hae = 0.009 - 0.597 kg, /s = 0.005373 kg0 /5.

1.2 The vapor pressure of water in the presence of dry air

The equilibrium between water and humid air is illustrated in Fig. 1.

dIy air (pda)

+
water vapor (p,)

Figure 1: The equilibrium between water and water vapor in the presence of dry air.

The situation in Fig. 1 differs from an equilibrium between water and pure water vapor, as there is
also inert gas, dry air, in the gas phase. The presence of dry air affects the situation because the water
pressure equals the total pressure of the gas p = pg, + po, making it differ from the pressure of the
water vapor p,,.

In equilibrium, the chemical potentials of water and water vapor are equal

Hw (T7 p) = (T, Pv), (20)

where subscript w is for water and v for water vapor. Note that p = py, + p». In principle, we can



solve the partial pressure of the water vapor pj, from Eq. (20). We notice that it depends on the
temperature and the partial pressure of the dry air

Dy = pv(Ta pda)~ (21)
We will now proof that to a very good accuracy
pv = pu(T) (22)

meaning that the dependency of the partial pressure of the water vapor on the partial pressure of the
dry air is very small. We can proof this by differentiating Eq. (20)

aﬂw 8/-‘11} 8“1] aﬂv

——dT + —dp = dT dp,. 23

ar T P T, ? (23)
On the other hand it holds that

aﬂw _ aﬂv o

ar ~ v ar

Oty Oty

- — Vw, = Uy, 24

Op v dp v ( )

where s,, and s, are the specific entropies of liquid water and water vapor, respectively, and v,, and
v, the specific volumes with the same labeling. Note that v, = 1/p,. Substituting the Eq. (24) into
the Eq. (23) we get that

—$udT + vydp = —s,dT + v, dp,,

from which follows that

Sy — Sw

dT + 2 dp. (25)

Uy Uy

dpv =

Oun the other hand, because y = h — T's, based on the equilibrium condition (20) it holds that
hw - TSw = hv - Ts’ua

from which

Substituting this into Eq. (25) yields

h, —h v
dp, = —2dT + —dp. 26
P, To. + e (26)

Then substituting the differential of the total pressure
dp = dpgq + dp,
into Eq. (26), we finally get that

hy — hy VU
dp, = drT
P T (v — V) Jrvv—vw

dpda . (27)

The Eq. (27) differs from the Clapeyron equation by the second term, which is absent in the Clapeyron



equation. If pg, = 0, then dpg, = 0, and the Eq. (27) coincides with the Clapeyron equation as it
should.

By taking into account that v, > v, and v, = 1/p,, and by using the Eq. (3), we can write an
approximative form for the Eq. (27)

dpv Mv (hv - hw)
= drl
Do RT?2 R

Myv,
dpda.- 28
T Pd ( )

On the other hand

dpy
Do

=d (Inp,),

and thus by using the Eq. (28) we can write

<8g;15:))T _ J\/JI;;HJ (30)

The specific volume of water is approximately v,, = 10~?m?/kg and therefore at a temperature of 50
°C, we get from the Eq. (30) an estimate

1 .0180-1072 1 1
O(nup,)) _ 00180-1077 1 _ 0 4501
Opda ) 8.314-323.15Pa Pa

By integrating the Eq. (30) and using the above value, we can estimate the effect of the air pressure
the the vapor pressure. When the partial pressure of dry air is pg, = 0 Pa and when it is pg, = 10° Pa
at a temperature of 50 °C we get that

Do (500C7pda = 105Pa)

1
0 (50°C, paa = 0)

1
=6.70 - 10_9?& (10° — 0) Pa=6.70-10"*

thus

— 5
Pu (50°C, paa = 10°Pa) _ (67010

= 1.0006702.
Dv (50007pda — 0)

When py, = 0, saturated water vapor is in equilibrium with water and there is no dry air. We can
read the corresponding vapor pressure from the vapor pressure table

Py (50°C, paa = 0) = pl, (50°C) = 0.12335 bar.

We denote the vapor pressure of saturated water® at a temperature of T with p/ (T). The vapor
pressure in the presence of dry air, when py, = 10° Pa, is

po (50°C, pga = 10° Pa) = 1.0006702 - 0.12335 bar = 0.12343 bar.

The difference between the vapor pressures is p, (50°C,pda =10° Pa) — Py (50°C, pgq = 0) = 8 Pa.

2The water at its boiling point is called saturated. The pressure of saturated water is the same as the vapor
pressure and it thus depends on the temperature.



This shows that the vapor pressure of water depends only a little on the presence of dry air in the gas
phase®. By repeating the above calculation for different temperatures, we can show that the vapor
pressure of water can be taken with a very good precision from the pressure table of saturated water
vapor, as if there is no dry air in the gas phase. To a good accuracy, the vapor pressure is only a
function of temperature and the Eq. (22) holds. Therefore, no new vapor pressure tables are necessary
for the calculations with humid air.

1.3 The vapor pressure of water and ice and the calculation of the state
variables of humid air

The partial pressure of vapor in air cannot be greater than the vapor pressure of saturated water p!, (T)
of the corresponding temperature 7. If it would be greater, the water vapor would condensate until
an equilibrium corresponding the saturated vapor pressure would be reached.

The pressure of saturated vapor can be obtained from the vapor pressure tables (see e.g. [2]). An
approximation can be obtained from an equation [3]

Py (t) t
log=~~ = 28.59051 — 8.2log | — + 273.1
g 8.59051 — 8.2log <oc+ 73 6>
t 3142.31
0.0024804 | — +273.16 | — ———. 31
- <OC+ ) = +273.16 (31)

The logarithm is the 10 base logarithm, the pressure is in the units of bar, and the temperature in the
units of Celsius.

Also a simpler approximative formula applies

T —372.79
pl, (T) = poexp <11.78) ,

T —43.15

where py = 10° Pa and the temperature is given in Kelvins.

When the temperature is below 0°C, the ice converts straight from solid to vapor i.e. sublimes. Then
the saturation pressure p! is calculated based on the vapor pressure of air, for which an experimental
formula holds

' (t 2663.91
log?e ) 10 5380997 — e (33)
mbar s¢ 1+273.16

where the temperature is in Celsius and the pressure in mbar.

Similarly to the water, we can write the Clayperon equation also for the vapor pressure of ice

hy — h;
dT

T (vy —v;) (34)

dpv =

where h; is the enthalpy and v; the specific volume of ice.

3The amount of nitrogen, oxygen, and carbon dioxide in air also affects the vapor pressure. However, this
can usually be neglected as the effect is extremely small.



The relative vapor pressure of air, that is the relative humidity, is defined as

Do
P, (T)

o= (35)

where p, is the partial pressure of water vapor in the air and p! (T) is the saturated vapor pressure at
a temperature of T. When ¢ = 1, that is 100 %, we say that the air is saturated.

Example 2. Let us calculate the properties of a) saturated air and b) air with a relative humidity of
© =50 %, when the total space{10mm}pressure is p = 1.0 bar and the temperature is 20 °C.

a) Saturated air, o = 100 %

We obtain the saturated vapor pressure from the Eq. (31)

' (20°C
log % = 28.59051 — 8.2log (20 4 273.16)
3142.31
.0024804 (20 + 273.16) — ————
+0.0024804 (20 + 273.16) 5027316
= -1.631
= p,(20°C) = 107*%!bar = 0.0234 bar

Moisture content from the Eq. (8)

0.0234
Tr = 06220m =0.0149 kgH20/kgda

The densities p4q, pv, and p from the Eqgs. (1), (3), and (4), respectively

(1.0 — 0.0234) - 105 - 0.0290
8.314 - 293.15

Pda = = 1.162kg/m?

~0.0234-10%-0.0180
Pv = 7831429315

= 0.0173kg/m?

Note that when you know one of the partial densities and the moisture content, you can calculate the
other one also by using the Eq. (7). The total density is then

p=(1.162 +0.0173) kg/m® = 1.179kg/m*
The enthalpy of humid air is obtained from the Eq. (15a)

hie = 1.006 - 20 + 0.0149 - (2501 + 1.85 - 20) = 57.936 kJ /kg,.,

b) Humid air, ¢ = 50 %

From part a) we know that p! (20°C) = 0.0234 bar. Thus we can get the partial pressure of the vapor
from the definition of the relative humidity (35)

Py = 0.50 - 0.0234 bar = 0.0117 bar



The moisture content is

0.0117

The densities are obtained as in part a)

(1-0.0117) - 10° - 0.0290
8.314 - 293.15

Pda = = 1.176 kg/m?

po = Tpde = 0.00720 - 1.176 kg/m?> = 0.00847 kg/m?>

p = (1.176 + 0.00847) kg/m® = 1.184kg/m?
And finally the enthalpy

hie = 1.006 - 20 + 0.00720 - (2501 + 1.85 - 20) = 38.394 kJ /kg,,,

Example 3. Now let us calculate the same thing but with a total pressure of p = 0.825 bar.

Saturated air, ¢ = 100 %

P (20°C) = 0.0234 bar

0.0234

(0.825 — 0.0234) - 10° - 0.0290

= 0.954kg/m?
8.314 - 203.15 0.954 kg /m

Pda =

po = Tpde = 0.0174kg/m3

p = (0.954 + 0.0174) kg/m* = 0.971 kg/m*
The enthalpy of humid air is obtained from the Eq. (15a)

hi = 1.006 - 20 4 0.0182 - (2501 4 1.85 - 20) = 66.312kJ /kg,,

b) Humid air, ¢ =50 %

From part a) we know that p/ (20°C) = 0.0234 bar. Thus we can get the partial pressure of the vapor
from the definition of the relative humidity (35)

Py = 0.50 - 0.0234 bar = 0.0117 bar

The moisture content is

0.0117
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The densities are obtained as in part a)

(1—0.0117) - 10° - 0.0290

— =1.176 kg/m?
Pda 8.314-293.15 76kg/m

po = Tpgq = 0.00784 - 1.176 kg/m> = 0.00922 kg/m?

p = (1.176 + 0.00922) kg/m® = 1.185kg/m?
And finally the enthalpy

hi = 1.006 - 20 4+ 0.00784 - (2501 + 1.85 - 20) = 40.018kJ /kg,.,.
By comparing the results of example 2 to the results of the example 3, we notice that the total pressure
of the air affects the moisture content z, the partial density of dry air pg,, the total density p, and the

enthalpy hr. Knowing the total pressure is therefore relevant when calculating the thermodynamic
properties of humid air.

The pressure and moisture content have also an effect on the mass flows. Let us continue the examples
2 and 3 by assuming that the volume flow of humid air at the fan inlet is 0.8 m3/s. What is then the
dry air flow and the vapor flow at the fan inlet in all the different cases?

Example 2 a), ¢ = 100 %:

Mga = paaV = 1.162kg/m®-0.8m3/s = 0.930 kg, /s
e = p,V =0.0173kg/m?®-0.8m>/s = 0.014kg/s

Example 2 b), ¢ = 50 %:

Miga = 1.176kg/m?-0.8m?/s = 0.941kgg, /s
m, = 0.00847kg/m®-0.8m>/s = 0.00678kg/s

Example 3 a), ¢ = 100 %:
Mmaa = 0.954kg/m?-0.8m®/s = 0.763kg,, /s
m, = 0.0174kg/m?® 0.8m?/s = 0.0139kg/s
Example 3 b), ¢ =50 %:
Mmiga = 1.176kg/m*-0.8m®/s = 0.941kg,, /s

m, = 0.00922kg/m?*-0.8m?3/s = 0.00738kg/s

We can see that the mass flows (also the total mass flow) differ in different cases. Note that you can
also get the mass flow of vapor by multiplying the dry air mass flow with the moisture content (see
Eq. (18)). When writing the energy balance, the quantity being used is the dry air mass flow rig,.
The effect of moisture is taken into account in the enthalpy hjy as shown in the Eq. (12).
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1.4 Drawing of a Mollier diagram

The properties of humid air are usually illustrated with a Mollier diagram. A single air pressure is
chosen for a single Mollier diagram. Usually the Mollier diagram is drawn for the standard atmospheric
pressure

p =1.013 bar = 760 mm Hg =1 atm.

As seen in the previous examples 2 and 3, we can only use the Mollier diagram when the pressure is
the same (or approximately same) that was used in the drawing of the diagram.

The x-axis of a Mollier diagram is the moisture content x. Let us draw an equally spaced scale on the
x-axis. Then draw an another axis at an 45° angle to the x-axis for the enthalpy hy = lp, - © (kJ/kg).
Thus the hg-axis is also equally spaced.* The result is illustrated in Fig. 2.

0 Xq Xo X3 Xy X

Figure 2: Example of a Mollier diagram.

Now let us draw the isotherms to the diagram
t=0°C, hi = cpdat + T (cput + lpo) = xlpo = 2501z, kJ/kg.

Note that the hg-scaling was constructed by using the equation hy = [,z = 2501x. Therefore, the
isotherm ¢ = 0°C lies on top of the x-axis. The isotherms with ¢ = ¢; # 0 are obtained from

t=t1, hk=cpiati + x (cpots + lpo) = 1.006¢1 + x (1.85¢1 +2501), kJ/kg.

The isotherms ¢; are straight lines in the diagram. Due to the term cp,t;, they are not quite parallel.
When ¢; < 0°C, the isotherms are declining and when ¢; > 0°C, the isotherms are ascending. The
isotherms cross the y-axis at = 0, that is hy = cpgqt. When cpq, is a constant, the temperature scale
on the y-axis is also equally spaced. The isotherms are illustrated in Fig. 3.

“Mollier diagrams can be drawn in many different ways. You can choose the direction of the hy-axis and
the scale differently. The illustration here is of a conventional way of drawing a Mollier diagram.
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Figure 3: The basic scales of a Mollier diagram.

Adding a saturation curve (@ = 100%) and other relative humidity (¢) curves completes the above
Mollier diagram.

Example 4. Drawing of a Mollier diagram for air at a total pressure of 875 mbar.

First draw the hg-x coordinate system as instructed above and add the temperatures to the y-axis by
using the equation

hic = cpdat + = (cput + lho) = caot = 1.006¢, kJ/kg.

For example when t = —5°C, hj, = —5.03 kJ/kg and when ¢t = 5°C, h;, = 5.03 kJ/kg. The isotherms
are equally spaced at the y-axis.

Then draw the saturation curve into the diagram. The vapor pressures can be calculated from the Eqs.
(31) and (33) or they can be read from a vapor pressure table. The moisture content z’ corresponding
to the saturated vapor pressure p), (¢) can be obtained from the Eq. (8) (with p = 0.875 bar). The
enthalpy of humid air from the Eq. (12) is

' =1.006t + 2’ (1.85¢ + 2501), kJ/kg.

Now we can draw the saturation curves corresponding to different temperatures ¢ by calculating the
enthalpies k), with different moisture contents =’ with the given ¢. Simultaneously the end points of the
isotherms are determined. The curves corresponding to the different relative humidities 1, 2, ... can
be drawn by calculating the corresponding moisture contents and using the already existing isotherms.

With high temperatures, the values for 2’ do not fit into the diagram unless we significantly extend
the x-axis. Then it is useful to calculate the hj-values for smaller values of x with a smaller relative
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humidity to be able to draw the isotherms into the diagram. Values calculated with 2’ and x = z5q9

are listed in the Table 1.

e=100% | p=100% | ¢=50% | » =50 %
t/°C | pl /bar ! h./kJ /kg T50% hi/kJ /kg
-10 | 0.00260 0.00185 -5.47 0.000925
-5 0.00402 0.00287 2.12 0.001432
0 0.00611 0.00437 10.93 0.00218
5 0.00872 0.00626 20.7 0.00311
10 | 0.01227 0.00885 324 0.00439
15 0.01704 0.01235 46.3 0.00612
20 0.0234 0.01709 63.5 0.00843 41.5
25 0.0317 0.0234 84.8 0.01147 54.4
30 0.0424 0.0317 111.2 0.01544 69.7
35 0.0562 0.0427 144.8 0.0206 88.1
40 0.0738 0.0573 187.8 0.0274 110.8

Table 1: Values for the drawing of the Mollier diagram with a total pressure of p = 0.875 bar.

By following the above instructions and using the values given in the Table 1 for the saturation curves
we can now draw the full Mollier diagram. The result is illustrated in the Fig. 4.

Commonly used Mollier diagrams are illustrated in the Figs. 4-7. The diagram in the Fig. 5 holds
for a total pressure of p = 1 bar and is used in problems concerning air conditioning technology.
The Fig. 6 is the American version of the Fig. 5. It is the same diagram except with an inverted
temperature scale. The diagram in the Fig. 7 covers a large range of temperatures and is therefore
suitable for applications in process engineering. A diagram of the same type as in the Fig. 7 can be
used for example in the designing of the drying part of a paper machine. In Fig. 7 the enthalpy is
in the horizontal axis and the lines of constant enthalpy are vertical lines. The curves f are curves
of moisture ratios defined as f = z/2’ (t), where 2’ (¢) is the moisture content of saturated air at a
temperature of ¢. The moisture ratio f and the relative humidity ¢ are different things and should
not, be mixed up.
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t = dry air temperature,

i = enthalpy,

pn = partial vapor pressure, kPa
@ = relative humidity, %
t,, = wet bulb temperature, °C
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= mass ratio,

: : g
= air density, 3
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Figure 5: A Mollier diagram commonly used in problems concerning air conditioning technology. The
total pressure in the diagram is p = 1 bar. Note that the notation in this figure does not completely
coincide with the text. The used symbols are explained in the above figure.
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1.5 Determining the air humidity

The humidity of air can be measured either by determining the dew point or the wet bulb temperature
of the air.

The dew point is the temperature of the saturated vapor at which it has the same vapor pressure as the
ambient humid air. When the total pressure is a constant, then the vapor pressure being a constant
also means that the moisture content is a constant. In other words, the dew point is the temperature
of the saturated vapor at which it has the same moisture content as the humid air. One can measure
the dew point by cooling a surface down to a temperature at which water starts to condense on it.
Then by measuring the temperature of the surface we can determine the dew point. Together with a
measurement of the air temperature we can then determine the state of the air.

Example 5. The air temperature is 20°C and the dew point is 8°C. What is the relative humidity
of the air?

Pl (20°C) = 0.0234bar
py, =D, (8°C) = 0.01072bar
Thus
o= —L 0458 = 45.8%.
P, (20°C) —

Example 6. The air pressure is 950 mbar. The temperature of a room is 20°C and the relative
humidity is ¢ = 40 %. What is the dew point of the room air?

P (20°0) 0.0234 bar

We can look up the result from the tables: p/ (¢t1) = 0.00936 bar corresponds to a temperature of
t1 = 6.0°C. The total pressure doesn’t affect the result.

If we want to read the result from the Mollier diagram, we need to find the crossing of the line
corresponding the to moisture content

0.00936
= 0662055200 00036 — 000059

and the saturation curve corresponding ¢ = 40 %. From there we can read the dew point temperature.
To be precise, we should use a Mollier diagram drawn with a total pressure of p = 950 mbar, but we
can get a decent approximation from the diagram with the total pressure of p = 1 bar.

When a moist cloth is placed into an air flow, it will after awhile reach an equilibrium temperature.
This equilibrium temperature is known as the wet bulb temperature (¢,;) and it is determined by the
heat and mass transfer of the system. If we neglect the heat flow radiating and conducting into the
cloth, we can write the heat balance of the cloth in a stationary situation as

o (t — tuwp) = 1ol (tup) » (36)

where ¢ is the temperature (°C) of the air flow, 7, the evaporation rate (kg/m2s) from the cloth,
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I (twp) the heat of evaporation of water (J/kg) at the temperature of t,,,° (°C), and « is the convective
heat-transfer coefficient (W/m2 OC).

For the evaporation rate of water from the cloth it holds that® [4]

S PN

My, = Mv .\
RT p _pg) (twb)

(37)
where k is the mass transfer coefficient (m/s). The heat and mass transfer coefficients relate via [4]

k= p%LeI*", (38)
14

where the power n is between 0.33...0.5 and
PCp = PuCpv + PdaCpdas J/m3 °C (39)

is the heat capacity of humid air. The dimensionless number Le is the so called Lewis number (in
Russian literature the Luikov number) and it is defined as

_ pcpD

L
e o

(40)
where D is the diffusion coefficient of water vapor in air (m?/s) and A is the thermal conductivity of
humid air (W/m°C). The thermodynamic properties of saturated humid air are listed in the Table 2,

where you can find e.g. the diffusion coefficient and the thermal conductivity.”

Substituting the Eqgs. (37) and (38) into the Eq. (36) yields

M, p o i P— Dy
t—typ = —Le 7" (tywp) In —————. 41
" pey RT (Fu) p — 2} (tuws) (4
Note that the heat-transfer coefficient a has disappeared from the Eq. (41) and the only term that
depends on the air flow conditions of the system is the power n® in the Lewis number. Because the
Lewis number is close to one, the dependence of the air flow conditions is very small.

When the state of the air, the temperature ¢, and the partial vapor pressure p, are known, the wet
bulb temperature can be obtained from the Eq. (41). Inversely, if the temperature ¢ and the wet bulb
temperature t,,;, are known, we can solve the partial vapor pressure p, from the Eq. (41) and thus the
air humidity.

’The temperature dependence of the heat of evaporation for water is
L (twb) = lho — (Cpuw — Cpu) twb = 2501 — (4.186 — 1.85) ty, = 2501 — 2.34t,, kJ/kg.

5T is the average absolute temperature at the boundary layer. In practical calculations we use T =
(t+twsp) /24 273.17 K.

"For comparison, there is a Table 3 on page 24 of thermodynamic properties of dry air. In the Table 2,
the zero point of enthalpy is set at 0 °C whereas in the Table 3 the zero point is set at 0K = —273.15°C. For
calculations with humid air, we always use the Table 2.

8The power n is the same as the power of the Prandtl (Pr) number in the heat-transfer equation Nu =
ARe™Pr", where Nu is the Nusselt number, A the cross-sectional area, and Re the Reynolds number. n
depends on the air flow conditions of the system.
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Temperature Moisture Partial vapor Partial vapor Heat of evapo- Enthalpy of | Partial density | Kinematic Specific heat capacity Thermal Diffusion coefhi-
content pressure density ration of water | the solution of dry air viscosity of the solution conductivity cient water-air
°C kgra0/k8dn kN /m? kg/m? kJ/kg kJ/kg 4 kgy,/m® 10* m®/s kJ/kgK W/mK 10° m?3/s
0 0.003821 0.6108 0.004846 2500.8 9.55 1.285 13.25 1.0108 0.02380 22.2
2 0.004418 0.7054 0.005557 2495.9 13.06 1.275 13.43 1.0120 0.02413 22.4
4 0.005100 0.8129 0.006358 2491.3 16.39 1.264 13.61 1.0134 0.02427 22.6
6 0.005868 0.9346 0.007257 2486.6 20.77 1.254 13.79 1.0149 0.02440 22.8
8 0.006749 1.0721 0.008267 2481.9 25.00 1.243 13.97 1.0167 0.02454 23.1
10 0.007733 1.2271 0.009396 2477.2 29.52 1.232 14.15 1.0186 0.02466 23.3
12 0.008849 1.4015 0.01066 2472.5 34.37 1.221 14.34 1.0208 0.02478 23.6
14 0.010105 1.5974 0.01206 2467.8 39.57 1.211 14.52 1.0233 0.02490 23.9
16 0.011513 1.8168 0.01363 2463.1 45.18 1.199 14.71 1.0260 0.02500 24.2
18 0.013108 2.062 0.01536 2458.4 51.29 1.188 14.89 1.0291 0.02511 24.5
20 0.014895 0.01729 2453.1 57.86 1.177 15.08 1.0325 0.02520 24.8
22 0.016892 0.01942 2449.0 65.02 1.175 15.27 1.0364 0.02529 25.2
24 0.019131 0.02177 2442.0 72.60 1.154 15.46 1.0407 0.02537 25.5
26 0.021635 0.02437 2439.5 81.22 1.141 15.65 1.0455 0.02544 25.9
28 0.024435 0.02723 2434.8 90.48 1.129 15.84 1.0509 0.02508 26.3
30 0.027558 0.03036 2430.0 100.57 1.116 16.03 1.0569 0.02556 26.6
32 0.031050 0.03380 2425.3 111.58 1.103 16.22 1.0635 0.02561 27.0
34 0.034950 0.03758 2420.5 123.72 1.090 16.41 1.0710 0.02565 27.4
36 0.039289 0.04171 2415.8 136.99 1.076 16.61 1.0793 0.02567 27.8
38 0.044136 0.04622 2411.0 151.60 1.061 16.80 1.0885 0.02569 28.3
40 0.049532 0.05114 2406.2 167.64 1.046 17.00 1.0989 0.02569 28.7
42 0.055560 0.05650 2401.4 185.40 1.030 17.20 1.1103 0.02568 29.1
44 0.062278 0.06233 2396.6 204.94 1.014 17.39 1.1232 0.02666 29.6
46 0.069778 0.06867 2391.8 226.55 0.9970 17.59 1.1375 0.02563 30.0
48 0.078146 0.07553 2387.0 250.45 0.9791 17.79 1.1534 0.02558 30.5
50 0.087516 0.08298 2382.1 277.04 0.9606 17.99 1.1713 0.02552 30.9
52 0.098018 0.09103 2377.3 306.64 0.9411 18.19 1.1913 0.02545 31.4
54 0.10976 0.09974 2372.4 339.51 0.9207 18.39 1.2137 0.02536 31.9
56 0.12297 0.1091 2367.6 373.31 0.8999 18.59 1.2389 0.02526 32.4
58 0.13790 0.1193 2362.7 417.72 0.8768 18.79 1.2673 0.02514 32.9
60 0.15472 0.1302 2357.9 464.11 0.8532 18.99 1.2994 0.02501 33.4
62 0.17380 0.1419 2353.0 516.57 0.8283 19.19 1.3357 0.02487 34.0
64 0.19541 0.1545 2348.1 575.77 0.8021 19.38 1.3770 0.02471 34.5
66 0.22021 26.14 0.1680 2343.1 643.51 0.7746 19.57 1.4241 0.02455 35.1
68 0.24866 28.55 0.1826 2338.2 721.01 0.7456 19.76 1.4782 0.02437 35.7
70 0.28154 31.16 0.1981 2333.3 810.36 0.7150 19.94 1.5418 0.02418 36.3
72 0.31966 33.96 0.2146 2328.3 915.57 0.6829 20.01 1.6132 0.02399 36.9
74 0.36468 36.96 0.2324 2323.3 1035.60 0.6489 20.28 1.6986 0.02379 37.6
76 0.41790 40.19 0.2514 2318.3 1179.42 0.6132 20.44 1.7994 0.02360 38.3
78 0.48048 43.65 0.2717 2313.3 1348.40 0.5755 20.58 1.9199 0.02341 39.0
80 0.55931 47.36 0.2933 2308.3 1560.80 0.5358 20.71 2.0664 0.02323 39.8
82 0.65573 51.33 0.3162 2303.2 1820.46 0.4939 20.81 2.2477 0.02307 40.7
84 0.77781 55.57 0.3406 2298.1 2148.92 0.4497 20.90 2.4767 0.02294 41.5
86 0.93768 60.50 0.3666 2293.0 2578.73 0.4031 20.96 2.7739 0.02285 42.5
88 1.15244 64.95 0.3942 2287.9 3155.67 0.3542 20.99 3.1708 0.02281 43.6
90 1.45873 70.11 0.4235 2282.8 3978.42 0.3026 20.99 3.7304 0.02293 44.7
92 1.92718 75.61 0.4545 2277.6 5236.61 0.2482 20.94 4.574 0.02295 46.0
94 2.73170 81.46 0.4873 2272.4 7395.49 0.1909 20.84 5.987 0.02318 47.4
96 4.42670 87.69 0.5221 2267.1 11944.39 0.1305 20.69 8.820 0.02355 49.0
98 10.30306 94.30 0.5588 2261.9 27711.34 0.06694 20.47 17.338 0.02409 50.8
100 e} 101.325 0.5977 2256.7 [e%s} 0 20.08 o) 0.02486 52.5

Table 2: Thermodynamic properties of saturated humid air. [5] Values of the humidity and the humid enthalpy refer to a total pressure of 100 kN/m?2. The
moisture diffusivity is estimated as the concentration-weighted mean value of th self-diffusion coefficient of water vapor and the limiting diffusivity of water
vapor through air at dilute concentrationts. Thermal conductivity is estimated from Mason and Saxena’s rule for mixtures [6]. The kinematic viscosity is
estimated from Wilke’s method [7] of predicting the dynamic viscosity of mixtures.
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Example 7. The air temperature is ¢t = 20°C and the wet bulb temperature is t,,;, = 10°C. What is
the moisture content of the air when the air pressure is a) p = 1 bar and b) p = 0.9 bar?

Solving the vapor pressure p, from the Eq. (41) gives

pep RT 1 1

—po=p—1p,(t t—typ) 2~ 42
p—pv = (p— P, (tw)) exp [(t = twp) M, p Lot (i) (42)
The diffusion coefficient, D in the Lewis number is inversely proportional to the total pressure
1
D= > (. (43)

At a temperature of 10°C and a pressure of p = 1 bar, the diffusion coefficient from the Table 2 is
D (10°C,p = 1 bar) = 23.3 - 10~°m?2/s. With the same temperature and the pressure p = 0.9 bar, the
diffusion coefficient can be obtained from the Eq. (43) D (10°C,p = 0.9 bar) = 25.9 - 10~5m?/s.

On the other hand, an inverse proportionality like in Eq. (43) also holds for the diffusion coeffi-
cient with the heat-transfer coefficient. With a good accuracy D/A = ¢(T). From the Table 2,
A(10°C,p = 1 bar) = 0.02466 W/mK and thus D/ = 9.45 - 10~% m3K/J.

The evaporation heat and the saturated vapor pressure can be obtained from the Table 2

1(10°C) = 2477-10° J/K
Py (tws) = ) (tws) = 0.01227 bar.

o~

—
~

S

>

N
|

The temperature T in the Eq. (42) is taken as the average temperature at the boundary layer (see
Footnote 6)

T = (20 J2r 10 + 273.15> K = 288.15 K.

For the heat capacity

PCp = PdaCpda + PvCpv = Pda (dea + Z'va) (44)

we would have to find an iterative solution as the vapor pressure p, and therefore the moisture content
x are unknown at this point. When the moisture content is small enough, as in this example, we
can approximate that pc, = pgqecqe. For a more exact solution, we would have to then repeat the
calculation with the vapor pressure from the Eq. (42) until a desired precision is reached. In this
example, we will settle for the result obtained with the above mentioned approximation for the heat
capacity.

When calculating the density and the heat capacity, we make an approximation p = pg, Or p = pya
and ¢, = cpqq. From this follows that
pCp RT ~ Mda ~ Mda

_—= Crh = —C da s 45
M, p M, P M, paa ( )

which as a numerical value is

Myq
Vdc,,da = 1617 J /kg°C.

Now from the Eq. (1), the partial density of air in a) and b) is



a)
paaMaa  pMyga  10°-0.029 ;
o= ~ - — 1211k
Pda = ""pp RT  8.314-288.15 g/m
b)
pdaMaa ., pPMaa _ 0.9-10°-0.029 3
a = = = =1. k
pd RT RT ~ ®314.om1s 089 ke/m
The Lewis number is
a)
D D
Le = 'Oci > puaaCpaa’y = 1:211-1006 945 107% = 1151
Assuming that n = 0.5, Le' ™™ = 1.073.
b)
D D
Le = % = piaCpaa’y = 10891006 -9.45 104 = 1035

and Le!™™ = 1.017.

Substituting all the obtained values into the Eq. (42) gives

a)
1 1
p—py, = (1.0 —0.012271) exp | (20 — 10) - 1617 - 1073 20772103 bar = 0.9938 bar
and thus
Py = (1.0 — 0.9938) bar = 0.0062 bar = 620 Pa
and
T = 0.662p ﬁvpv = 0.662% = 0.00413.
b)
1 1
p—py, = (0.9 —0.012271) exp | (20 — 10) - 1617 - 1017 24772103 bar = 0.8934 bar
and thus
Py = (0.9 — 0.8934) bar = 0.0066 bar = 660 Pa
and finally
x = 0.662—L0— = 0.662¢ = 0.00489.

D= Do 0.9 - 10° — 660

23
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By comparing the a) and b) parts, we can notice that the pressure has a significant impact on the
results. It is important that the effects of pressure are taken into account in industrial air conditioning
and process measurements, where there can be a partial vacuum or considerable overpressure compared
to the atmospheric pressure.

Next we derive an approximation for the Eq. (41) that can be used when the partial pressure of the
vapor is small compared to the total pressure. It holds with a relatively good accuracy that?

p; (twb) — Dv ~ p;; (twb) —Pv o p;; (twb) Do

D —Dv :hl 1+

In——— ~ .
p—= pé} (twb) p—= p;) (twb) p—= p;; (twb) p— p;; (twb) P— Do

Now using the Eq. (8), we get that

4 Ma
m—L P o ) — ), (46)

D — p;; (twb) M,

where z’ (t,) is the moisture content of saturated air corresponding to a temperature of ¢, and a
total pressure of p. Substituting the approximations from the Eqgs. (45) and (46) into the Eq. (41)
yields

' (tup) — ¢ 1
t— twb l (twb) Lelin ( )

For air the Lewis number is approximately 1 (see example 7), so to a good accuracy Le'™™ = 1.

Therefore the Eq. (47) simplifies to

' (twy) — ¢
t—tuwy L (twp) (48)

Above we discussed to which temperature does a moist cloth set when it is considered to be thermally
isolated except from an air flow. We also assumed that there is no radiant heat exchange between the
cloth and the air flow. During this discussion, the state of the air flow remained unchanged.

If the moisture from the cloth humidifies the air adiabatically so much that the state of the air flow
also changes, the moist cloth sets to a slightly different temperature. There is a wet bulb temperature
tup for every state of air (¢,z), which can be calculated from the Eq. (41) or from the approximation
(48), when the partial pressures are small compared to the total pressure. An interesting special case
is when the state of the air reaches the saturation curve. Then the temperatures of the air flow and
the moist cloth are the same. This equilibrium temperature is known as the thermodynamic wet bulb

temperature or the adiabatic saturation temperature (¢,q4)-

When air is humidified with a water flow 7, and when the ingoing and outgoing humid air flows are
denoted as 71 and rhs, respectively, we can write the energy balance of the humidifying chamber as

Thohs — 1ihy = M he. (49)

The Eq. (49) is illustrated in the Fig. 8.

9Natural logarithm can be expanded as a Taylor series

(71)n+1 2 3

- n ¢
ln(1+x):ZTx :‘T—?+§+”"

n=1

when |z| <1 unless x = —1. If x is small, we can estimate that In (1 + x) & z.
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Figure 8: The energy balance of an adiabatic humidifying chamber. Here ¢ is net thermal power going
into the system and W,, is the net work done by the system into the environment.

In the Eq. (49) the incoming enthalpy flow of the humid air is

mi1h1 = Maa,1Rda,1 + 0,100 1 (50a)
and the outgoing is

maho = Mda,20da,2 + My 2h0 2. (50b)
Because the flow of dry air remains unchanged, it holds that

Mda = Mda,1 = Mda,2; (51)

and thus we can rewrite the enthalpy flows in the Eqgs. (50a) and (50b) as'®

mihy = Maalue,1 (52a)

Mmohg = Maah,2, (52b)
where

hka = haa,1 + T1he 1 (53a)

hk2 = haa,2 + T2hy 2 (53b)

as seen in the Eq. (12). When all the water supplied into the humidifying chamber is evaporated, the
following humidity balance holds

My = mv,2 - m@,l = Mgq (-TQ - xl) . (54)
Substituting the Egs. (52a) and (52b) into the Eq. (54) yields

Ahy,

TI‘ = hw7 (55)

where Ahy, = hi o — hi,1 and Ax = x9 — 1.

When air is adiabatically humidified with water of a temperature of ¢,4, the enthalpy of water is

he = Cputad. (56)

My

10Note that the moisture content z = :n"—d” expressed with the mass flows is z = .
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If the air is humidified such that it reaches a saturated state corresponding to the temperature of ¢,4,
we denote

hi2 = hiad
Ty = Tad- (57)

Using the notations (57), we can drop the subscript 1 and write that 21 = « and hy 1 = hy. We can
now rewrite the Eq. (55) by using the above notation and the Eq. (56) as

hi — Pk ad

= Cpwlad- 58
T — Toq Cpwtad (58)

The state moves along a line in the Mollier diagram, where the enthalpy and the moisture content are
determined by the Eq. (58). This is illustrated in the Fig. 9.

The Eq. (58) can be formally written in a form resembling the Eq. (48). To see this, let us first write
the Eq. (58) as

hi — ik ad — Cpwtad (T — Tqq) = 0.
On the other hand,

hi = cpdat + = (cput + o)
and

hiad = Cpdatad + Tad (Cpotad + lho) -

Substituting these to the above equation we can rewrite it as

(dea + mcpv) (t - tad) + (CE - xad) (lho + vatad - prtad) =0. (59)
t
hk
A
saturation curve
tad B
hk,ad
X

X Xod

Figure 9: The change of the state of air in adiabatic humidifying. A denotes the initial state and B
the final saturated state.
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The heat of evaporation of water at a temperature of t,q is

U (tad) = lho + Cpotad — Cpwlad (60)
and the specific heat of humid air per kg4, is

Cpk = Cpda + TCpy. (61)
Substituting the Egs. (60) and (61) into the Eq. (59) yields

Tad — T Cpk
= 62
t—tag  1(taa)’ (62)

which is equivalent with the Eq. (58).

The Eq. (62) is almost the same as the approximative equation (48) derived for the wet bulb tem-
perature. When the partial vapor pressure is small compared to the air pressure, that is the moisture
content is small, the specific heat of humid air per kgy,o and per kg,, are approximately the same,
that is ¢, = cpi. If the moisture content is small and Le = 1, the adiabatic saturation temperature
(thermodynamic wet bulb temperature) t,q is approximately the same as the “technical” wet bulb
temperature t,,p.

Example 8. In the Mollier diagram, starting from the 14 °C at the saturation curve, draw a) the line
along which the state moves during adiabatic humidifying and b) the guideline associated with the
wet bulb temperature measurement that can be used to define the state. The air pressure is 1 bar.

pl, (14°C) = 0.01597 bar (from the Table 2)
0.01597
ad = 0.6620—————— = 0.01009 = 2’ (¢,
Fad 1.0 — 0.01597 @ (tus)

cpe = 1.006 + 0.01009 - 1.85 = 1.025 KJ /°Ckg,

1(14°C) = 24678 kJ/kg (from the Table 2)

paa = 1.211 kg/m® (from the Table 2)

py = 0.01206 kg/m® (from the Table 2)

P = paa+ po = 1.223 kg/m”

PCh = PdaCpda + PuCps = 1.211 - 1.006 + 0.01206 - 1.85 = 1.241 kJ/m® °C
¢, = 1.015 kJ /kg°C

D =23.9-107% m?/s (from the Table 2)

A =0.0249 W/m°C (from the Table 2)

_ Dpe, 23.9-107°-1241
P 0.0249

Le =1.191
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a) Let us choose a point on the isotherm ¢ = 25 °C to help with the drawing. From the Eq. (62)

~1.025
~2467.8

Tad — T (25 — 14) = 0.00457

we get the location of the point = 0.01009 — 0.00457 = 0.00552.

b) Similarly we get a point to help with the drawing of the line for the wet bulb temperature. From
the Eq. (47)

1.015 1

= 51678 119705 (20 — 14) = 0.00415

2 (twp) —

and thus x = 0.00594. The results are illustrated in the Fig. 10
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Figure 10: The lines used to define the state of air. M = the wet bulb temperature line, E = line of
constant enthalpy, and A = line of adiabatic humidifying.

The enthalpy of humid air at a temperature of 14 °C at the saturation curve is
hiaa = 1.0016 - 14 + 0.01009 (1.85 - 14 + 2501) = 39.58 kJ /kg.
The moisture content corresponding to this enthalpy at a temperature of 25 °C is determined by

39.58 = 1.005 - 25 + x (1.85 - 25 4 2501) ,
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from which z = 0.00567.

Comparing the obtained value to the results of the Examples 6 and 7, we realize that the line of
constant enthalpy lies in between the line corresponding to the wet bulb temperature and the line of
adiabatic humidifying. The closer the Lewis number is to one the closer the wet bulb temperature and
the adiabatic humidifying temperature are to each other.

In practical calculations you can use the line of constant enthalpy as the wet bulb temperature guideline.
The crossing of the line of constant enthalpy and the isotherm, corresponding to the state of the
air, gives the humidity of the air. For more precise calculations you must use the Eq. (41) or it’s
approximative form (47) if the vapor pressures (p, and pl,) are small enough compared to the total
pressure p.

As an example of using the Mollier diagram of the Fig. 7 to determine the state of air, we can take
a typical measurement from the exhaust hood of a paper machine. The temperature and the wet
bulb temperature of the extract air are 82 °C and 60 °C, respectively. In the Fig. 7, start from
the saturation curve at a temperature of 60 °C and move up along the line of constant enthalpy
(hi =460 kJ/kg,,) until you reach the isotherm ¢ = 82°C. The crossing point of the line of constant
enthalpy and the isotherm represents the state of the air. To the accuracy of the Fig. 7, x = 0.14
and f = /2’ (82°C) = 0.20. Using the obtained x = 0.14 and p = 1.0 bar, we can calculate the
corresponding relative humidity . From the Eq. (9) we get p, = 0.183 bar and from the Table 2
pl, (82 °C) = 0.5133 bar. Therefore, from the definition (35), ¢ = p,/p), (82 °C) = 0.358 = 35.8 %.
Notice that f and ¢ differ notably.

Let us write the Eq. (48) in a numerical form when Le 22 1, [ (¢,;) = 2450 kJ /kg, and ¢, = 1.0 kJ /kg°C.
With the given values, the Eq. (48) can be written as'!

_ 1
Po =Dl (twp) — 6.6- 1071 p (t — tup) erok (63)
from which the state of air can be quickly estimated. Usually the temperature of the air is referred to
as dry temperature to clearly separate it from the wet bulb temperature of the air.

Finally we should emphasize that especially in process measurements, the radiation can have a sig-
nificant effect on the wet bulb temperature. Therefore, the wet bulb temperature generally depends
also on the measurement device and the way of measuring. If the air flow is really small, the radiation
may have a major effect in addition to the convective heat transfer. In principle, for each wet bulb
temperature measurement we can experimentally determine a formula analogous to the Eq. (63).

1.6 The changes of state of humid air

Let us study a balance boundary illustrated in the Fig. 11. The system can basically be any part of
the air around process equipment where there are humid air flows. In air conditioning applications,
the balance boundary can for example consist of the inside of a room or an office.

UThe Eq. (63) actually follows from the Eq. (47) and the above logarithm approximation (46) when we
also notice that

_ 1
6.6-10 4(t7tu,b)@ < 1.
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Figure 11: Energy and moisture balance boundaries.

In a stationary state, the energy balance of the area inside the balance boundary is

¢— Wy = (Maahkz — Maahi) + [(Thishia — 1hihi)
+ (mthwQ - mwlhwl) + (mv2hv2 - mvlhvl)] ) (64)

where ¢ is net thermal power going into the system, W,, is the net work done by the system into
the environment!?, 7, is the water flow (1 = inflow, 2 = outflow), 7, is the ice flow, and 70, is the
separate vapor flow not included in the air flows. The vapor flows within the humid air are 14,21 and
myer2 and they are taken into account in the terms hg; and hys.

Similarly, the humidity or the water balance is
Mda (T2 — 1) = (1141 — M2) + (M1 — M) + (M1 — 112) - (65)
In many cases, the inflow and outflow air can consist of multiple air flows in different states (temper-

ature, moisture content) and these must be handled separately. This means that the enthalpy flows
must also be separated accordingly.

12The expansion work is not included in this term, since it is already taken into account in the enthalpy
terms.



Example 9. Mixing of two air flows.

g,y
—q
Ty, hy,

h, =constant

iy hy g

In this case, the energy balance is (see Fig. 12a)

Mda1hi1 + Maa2hk2 = Mdashies
and the water balance is

Mda1Z1 + Mda2T2 = Maa3T3.
For the dry air flows it holds that

Mdal + Mda2 = Mda3-
From the Eqs. (66)-(68) it follows that

hks —hga T3 — X2 Mdal

. )
hp1 —his 1 —23  1gao
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—

Figure 12: The mixing point in a Mol-
lier diagram. If the state ends up being
supersaturated (see Fig. c) to the point
3, the state point goes back to the satu-
ration curve to the point 4. In this pro-
cess, (r3 — x4) kgpao/kgy, of water con-
denses into the mixing chamber.

(69)
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which shows that the mixing point 3 is on the line connecting the points 1 and 2, and that the position
of the point 3 is obtained from the “lever rule” (1hgq1l1 = Maaals, see Fig. 12b).

Example 10. Heating of an air flow. From the Eq. (64) follows that
¢ = mda (hiz — hi1)
and from the Eq. (65) that
Maa (2 — 1) =0
that is
To = 7.
During heating, the state of the air moves along a line of a constant moisture content.

Example 11. Cooling of an air flow. From the energy balance (64)
¢ = 1Mga (hre — he1) + 1w2hws,

where ¢ < 0. During the cooling, also water can condense and therefore the term ri,0h,2 is present
in the above equation. Whether water condenses or not depends on the surface temperature of the
cooling radiator. From the water balance (65)

Mda (T2 — 1) = =My

so the final moisture content is less or equal the initial one zo < x;. The cooling of an air flow is
illustrated in Fig. 13.

When an air flow encounters a surface with a temperature below the dew point, water condenses on
the surface. If all the air contacts the cold surface, the state of the air is at point 3 after the cooling.
In practice, part of the air does not contact the cold surface and thus the air after the cooling radiator
is a mixture of saturated air (3) and the air going past the cooling radiator (1). As shown in the
Example 9, the mixing point 2 is on the line connecting the points 1 and 3. The closer the point 2 is
to the point 3, the more effective the cooling radiator.
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Figure 13: The change of the state of air in a cooling radiator. If the surface temperature ¢, is below
the dew point tg4, water condenses during cooling. If t; > t4, the cooling happens along the line of a
constant moisture content r; = xs.

Example 12. Adding vapor into air. From the Egs. (64) and (65) follows that
Myhy = Maq (hk2 — hi)
and
My = Maa (T2 — 1),
where 1, is the added vapor flow and h, its enthalpy. Combining the above equations yields

hia — hya

T2 — T1

= hy. (70)

In differential form, the Eq. (70) is

dhy,

dz o (71)

On the other hand, by differentiating Eq. (15b) with respect to ¢ and = we get
dhy, = (Cpda + Tcpy) dt + (tepn + lho) dz,
which together with the Eq. (71) gives

dt g — (lno —tepn) _ hiy—ha (1) (72)
dx Cpda + TCpy Cpda + TCpy 7

where hy, (t) = lpo + cpot is the enthalpy of the vapor at a temperature of ¢.

We can see from the Eq. (72) that if the temperature of the vapor added into the air is lower than
the air temperature, the air cools down dt/dx < 0. If the temperature of vapor is greater than the
temperature of the air, the air warms up dt/dx > 0.
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Example 13. The temperature of a room needs to stay at 20°C and the relative humidity at ¢ = 50
%. The total thermal power of the room is 2.45 kW and the total vapor flow is 1.53- 1072 kg/s. What
needs to be the state (temperature and moisture content) of the inlet air when the inlet air flow is a)
mae = 0.3 kg/s and b) g, = 0.6 kg/s?

P, (20°C) = 0.02337 bar  p, = 0.5 - 0.02337 bar = 0.01169 bar

Thus the moisture content in the room is

0.01169
= . 22 — - = . .
v = 0622055 769 — 000736

When the inlet air mixes into the room air properly, the moisture content and the temperature of the
outlet air are the same as the temperature ¢t = 20°C and moisture content zo = 0.00736 of the room.
The enthalpy of the outlet air is then

hi2 = 1.006 - 20 + 0.00736 (2501 + 1.85 - 20) = 38.8 kJ /kg.

The enthalpy of the inlet air hg; and its moisture content x; are determined from the energy (64) and
the water balances (65)

mda (th - hkl) d) + m'uhv

Mda (T2 — 1) = 1y

The total thermal power means that it also takes into account the enthalpy flow i, h,. Thus
¢ + myh, = 2.45 kW

and therefore
a)
2.45
hia2 — hy1 = 08 kJ/kg = 8.2 kJ /kg

hi1 = (38.8 —8.2) kJ/kg = 30.6 kJ /kg

2.45

hiet = (38.8 — 4.1) kJ/kg = 34.7 kJ /kg.

The total vapor flow is 71, = 1.53 - 1072 kg/s and thus

a)
1.53-1073
Ty — = o = 0.0051
21 = 0.00736 — 0.0051 = 0.00226
b)
1.53-1073
Xo — X1 = 1531077 0.00255

0.6



x1 = 0.00736 — 0.00255 = 0.00481.

The corresponding temperatures are obtained from the following equation

hk — J:l;w

Cpda T TCpy

a) x = 0.00226 and h; = 30.6 kJ/kg

~30.6 —0.00226 - 2501

- =24.4°C
1.006 + 0.00226 - 1.85
b) = 0.00481 and hy = 34.7 kJ /kg
_ 3470004812501 _ o,

~ 1.006 + 0.00481 - 1.85

The results are illustrated in the Fig. 14.

35
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Figure 14: The state line of the inlet air. a and b denote the two different cases for the final state.
Note that the notation in this figure does not completely coincide with the text. The used symbols
are explained in the above figure.
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