## Symmetrical system components

Decomposition of unsymmetrical (unbalanced) voltage:

$$
\begin{aligned}
& \hat{\mathrm{U}}_{\mathrm{A}}=\hat{\mathrm{U}}_{\mathrm{A} 1}+\hat{\mathrm{U}}_{\mathrm{A} 2}+\hat{\mathrm{U}}_{\mathrm{A} 0} \\
& \hat{\mathrm{U}}_{\mathrm{B}}=\hat{\mathrm{U}}_{\mathrm{B} 1}+\hat{\mathrm{U}}_{\mathrm{B} 2}+\hat{\mathrm{U}}_{\mathrm{B} 0} \\
& \hat{\mathrm{U}}_{\mathrm{C}}=\hat{\mathrm{U}}_{\mathrm{C} 1}+\hat{\mathrm{U}}_{\mathrm{C} 2}+\hat{\mathrm{U}}_{\mathrm{C} 0}
\end{aligned}
$$




Positive sequence (1), negative (2) and zero (0) sequence.
Hence (reference phase A)

$$
\begin{aligned}
& \hat{U}_{\mathrm{A}}=\hat{U}_{1}+\hat{U}_{2}+\hat{U}_{0} \\
& \hat{\mathrm{I}}_{\mathrm{A}}=\hat{\mathrm{I}}_{1}+\hat{\mathrm{I}}_{2}+\hat{\mathrm{I}}_{0} \\
& \hat{U}_{\mathrm{B}}=\hat{\mathrm{a}}^{2} \hat{\mathrm{U}}_{1}+\hat{\mathrm{a}} \hat{\mathrm{U}}_{2}+\hat{\mathrm{U}}_{0} \\
& \hat{\mathrm{I}}_{\mathrm{B}}=\hat{\mathrm{a}}^{2} \hat{\mathrm{I}}_{1}+\hat{\mathrm{a}} \hat{\mathrm{I}}_{2}+\hat{\mathrm{I}}_{0} \\
& \hat{\mathrm{U}}_{\mathrm{C}}=\hat{\mathrm{a}} \hat{\mathrm{U}}_{1}+\hat{\mathrm{a}}^{2} \hat{\mathrm{U}}_{2}+\hat{\mathrm{U}}_{0} \\
& \hat{\mathrm{I}}_{\mathrm{C}}=\hat{\mathrm{a}} \hat{\mathrm{I}}_{1}+\hat{\mathrm{a}}^{2} \hat{\mathrm{I}}_{2}+\hat{\mathrm{I}}_{0} \\
& \text { where } \hat{a}=-\frac{1}{2}+j \frac{\sqrt{3}}{2}=e^{j \frac{2 \pi}{3}} \\
& \hat{a}^{2}=-\frac{1}{2}-j \frac{\sqrt{3}}{2}=e^{j \frac{4 \pi}{3}}
\end{aligned}
$$

Matrix

$$
\left(\mathrm{U}_{\mathrm{ABC}}\right)=\left(\begin{array}{c}
\hat{\mathrm{U}}_{\mathrm{A}} \\
\hat{\mathrm{U}}_{\mathrm{B}} \\
\hat{\mathrm{U}}_{\mathrm{C}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hat{\mathrm{a}}^{2} & \hat{a} & 1 \\
\hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} & 1
\end{array}\right)\binom{\hat{\mathrm{U}}_{1}}{\hat{\mathrm{U}}_{2}}=(\mathrm{T})\left(\mathrm{U}_{120}\right)
$$

Inversely

$$
\left(\mathrm{U}_{120}\right)=\left(\begin{array}{l}
\hat{\mathrm{U}}_{1} \\
\hat{\mathrm{U}}_{2} \\
\hat{\mathrm{U}}_{0}
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
1 & \hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} \\
1 & \hat{\mathrm{a}}^{2} & \hat{\mathrm{a}} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\hat{\mathrm{U}}_{\mathrm{A}} \\
\hat{\mathrm{U}}_{\mathrm{B}} \\
\hat{\mathrm{U}}_{\mathrm{C}}
\end{array}\right)=\left(\mathrm{T}^{-1}\right)\left(\mathrm{U}_{\mathrm{ABC}}\right)
$$

3ph power

$$
\begin{aligned}
& \hat{\mathrm{S}}=\hat{\mathrm{U}}_{\mathrm{A}} \hat{\mathrm{I}}_{\mathrm{A}}^{*}+\hat{\mathrm{U}}_{\mathrm{B}} \hat{\mathrm{I}}_{\mathrm{B}}^{*}+\hat{\mathrm{U}}_{\mathrm{C}} \hat{\mathrm{I}}_{\mathrm{C}}^{*}=\left(\begin{array}{lll}
\hat{\mathrm{U}}_{\mathrm{A}} & \hat{\mathrm{U}}_{\mathrm{B}} & \hat{\mathrm{U}}_{\mathrm{C}}
\end{array}\right)\left(\begin{array}{l}
\hat{\mathrm{I}}_{\mathrm{A}} \\
\hat{\mathrm{I}}_{\mathrm{B}} \\
\hat{\mathrm{I}}_{\mathrm{C}}
\end{array}\right)^{*}=\left(\mathrm{U}_{\mathrm{ABC}}\right)^{\mathrm{T}}\left(\mathrm{I}_{\mathrm{ABC}}\right)^{*} \\
& \hat{\mathrm{~S}}=\left[(\mathrm{T})\left(\mathrm{U}_{120}\right)\right]^{\mathrm{T}}\left[(\mathrm{~T})\left(\mathrm{I}_{120}\right)\right]^{*}=\left(\mathrm{U}_{120}\right)^{\mathrm{T}}(\mathrm{~T})^{\mathrm{T}}(\mathrm{~T})^{*}\left(\mathrm{I}_{120}\right)^{*} \\
& (\mathrm{~T})^{\mathrm{T}}(\mathrm{~T})^{*}=\left(\begin{array}{ccc}
1 & \hat{\mathrm{a}}^{2} & \hat{\mathrm{a}} \\
1 & \hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hat{\mathrm{a}} & \hat{\mathrm{a}}^{2} & 1 \\
\hat{\mathrm{a}}^{2} & \hat{\mathrm{a}} & 1
\end{array}\right)=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right)=3(\mathrm{E}) \\
& \hat{\mathrm{S}}=3\left(\mathrm{U}_{120}\right)^{\mathrm{T}}\left(\mathrm{I}_{120}\right)^{*} \\
& \hat{\mathrm{~S}}=3\left(\hat{\mathrm{U}}_{1} \hat{I}_{1}^{*}+\hat{\mathrm{U}}_{2} \hat{I}_{2}^{*}+\hat{\mathrm{U}}_{0} \hat{I}_{0}^{*}\right)
\end{aligned}
$$

## Series symmetrical segments in ES

$$
\begin{aligned}
& \left(\begin{array}{l}
\Delta \hat{U}_{A} \\
\Delta \hat{U}_{B} \\
\Delta \hat{U}_{\mathrm{C}}
\end{array}\right)=\left(\begin{array}{ccc}
\hat{Z} & \hat{Z}^{\prime} & \hat{Z}^{\prime} \\
\hat{Z}^{\prime} & \hat{Z}^{\prime} & \hat{Z}^{\prime} \\
\hat{Z}^{\prime} & \hat{Z}^{\prime} & \hat{Z}
\end{array}\right)\left(\begin{array}{l}
\hat{I}_{A} \\
\hat{I}_{\mathrm{B}} \\
\hat{I}_{\mathrm{C}}
\end{array}\right) \\
& \left(\Delta U_{A B C}\right)=\left(\mathrm{Z}_{\mathrm{ABC}}\right)\left(\mathrm{I}_{\mathrm{ABC}}\right) \\
& (\mathrm{T})\left(\Delta \mathrm{U}_{120}\right)=\left(\mathrm{Z}_{\mathrm{ABC}}\right)(\mathrm{T})\left(\mathrm{I}_{120}\right) \\
& \left(\Delta \mathrm{U}_{120}\right)=(\mathrm{T})^{-1}\left(\mathrm{Z}_{\mathrm{ABC}}\right)(\mathrm{T})\left(\mathrm{I}_{120}\right)=\left(\mathrm{Z}_{120}\right)\left(\mathrm{I}_{120}\right) \\
& \left(\mathrm{Z}_{120}\right)=(\mathrm{T})^{-1}\left(\mathrm{Z}_{\text {ABC }}\right)(\mathrm{T}) \\
& \left(Z_{120}\right)=\left(\begin{array}{ccc}
\hat{Z}_{1} & 0 & 0 \\
0 & \hat{Z}_{2} & 0 \\
0 & 0 & \hat{Z}_{0}
\end{array}\right)=\left(\begin{array}{ccc}
\hat{Z}-\hat{Z}^{\prime} & 0 & 0 \\
0 & \hat{Z}-\hat{Z}^{\prime} & 0 \\
0 & 0 & \hat{Z}+2 \hat{Z}^{\prime}
\end{array}\right)
\end{aligned}
$$

## Multiple lines

$$
\begin{aligned}
& \left(\begin{array}{c}
\left(\Delta \mathrm{U}_{\mathrm{V} 1}\right) \\
\left(\Delta \mathrm{U}_{\mathrm{V} 2}\right) \\
\ldots
\end{array}\right)_{\mathrm{ABC}}=\left(\mathrm{Z}_{\mathrm{ABC}}\right)\left(\begin{array}{c}
\left(\mathrm{I}_{\mathrm{V} 1}\right) \\
\left(\mathrm{I}_{\mathrm{V} 2}\right) \\
\ldots
\end{array}\right)_{\mathrm{ABC}} \\
& \left(\begin{array}{ccc}
(\mathrm{T}) & 0 & 0 \\
0 & (\mathrm{~T}) & 0 \\
0 & 0 & \ldots
\end{array}\right)\left(\begin{array}{c}
\left(\Delta \mathrm{U}_{\mathrm{V} 1}\right) \\
\left(\Delta \mathrm{U}_{\mathrm{V} 2}\right) \\
\ldots
\end{array}\right)_{120}=\left(\mathrm{Z}_{\mathrm{ABC}}\right)\left(\begin{array}{ccc}
(\mathrm{T}) & 0 & 0 \\
0 & (\mathrm{~T}) & 0 \\
0 & 0 & \ldots
\end{array}\right)\left(\begin{array}{c}
\left(\mathrm{I}_{\mathrm{V} 1}\right) \\
\left(\mathrm{I}_{\mathrm{V} 2}\right) \\
\ldots
\end{array}\right)_{120} \\
& \left(\begin{array}{c}
\left(\Delta \mathrm{U}_{\mathrm{V} 1}\right) \\
\left(\Delta \mathrm{U}_{\mathrm{V} 2}\right) \\
\ldots
\end{array}\right)_{120}=\left(\begin{array}{ccc}
(\mathrm{T}) & 0 & 0 \\
0 & (\mathrm{~T}) & 0 \\
0 & 0 & \ldots
\end{array}\right)^{-1}\left(\mathrm{Z}_{\mathrm{ABC}}\right)\left(\begin{array}{ccc}
(\mathrm{T}) & 0 & 0 \\
0 & (\mathrm{~T}) & 0 \\
0 & 0 & \ldots
\end{array}\right)\left(\begin{array}{c}
\left(\mathrm{I}_{\mathrm{V} 1}\right) \\
\left(\mathrm{I}_{\mathrm{V} 2}\right) \\
\ldots
\end{array}\right)_{120} \\
& \left(\begin{array}{c}
\left(\Delta \mathrm{U}_{\mathrm{V} 1}\right) \\
\left(\Delta \mathrm{U}_{\mathrm{V} 2}\right) \\
\ldots
\end{array}\right)_{120}=\left(\begin{array}{ccc}
(\mathrm{T})^{-1} & 0 & 0 \\
0 & (\mathrm{~T})^{-1} & 0 \\
0 & 0 & \ldots
\end{array}\right)\left(\mathrm{Z}_{\mathrm{ABC}}\right)\left(\begin{array}{ccc}
(\mathrm{T}) & 0 & 0 \\
0 & (\mathrm{~T}) & 0 \\
0 & 0 & \ldots
\end{array}\right)\left(\begin{array}{c}
\left(\mathrm{I}_{\mathrm{V} 1}\right) \\
\left(\mathrm{I}_{\mathrm{V} 2}\right) \\
\ldots
\end{array}\right)_{120}
\end{aligned}
$$

## Shunt symmetrical segments in ES

$$
\begin{aligned}
& \left(\mathrm{U}_{\mathrm{ABC}}\right)=\left(\mathrm{Z}_{\text {ABC }}\right)\left(\mathrm{I}_{\mathrm{ABC}}\right)+\left(\mathrm{Z}_{\mathrm{N}}\right)\left(\mathrm{I}_{\text {ABC }}\right) \\
& \left(Z_{N}\right)=\left(\begin{array}{lll}
\hat{Z}_{N} & \hat{Z}_{N} & \hat{Z}_{N} \\
\hat{Z}_{N} & \hat{Z}_{N} & \hat{Z}_{N} \\
\hat{Z}_{N} & \hat{Z}_{N} & \hat{Z}_{N}
\end{array}\right) \\
& \left(\mathrm{U}_{120}\right)=(\mathrm{T})^{-1}\left(\mathrm{Z}_{\text {ABC }}\right)(\mathrm{T})\left(\mathrm{I}_{120}\right)+(\mathrm{T})^{-1}\left(\mathrm{Z}_{\mathrm{N}}\right)(\mathrm{T})\left(\mathrm{I}_{120}\right) \\
& \left(\mathrm{Z}_{120}\right)=(\mathrm{T})^{-1}\left[\left(\mathrm{Z}_{\mathrm{ABC}}\right)+\left(\mathrm{Z}_{\mathrm{N}}\right)\right](\mathrm{T}) \\
& \left(Z_{120}\right)=\left(\begin{array}{ccc}
\hat{Z}-\hat{Z}^{\prime} & 0 & 0 \\
0 & \hat{Z}-\hat{Z}^{\prime} & 0 \\
0 & 0 & \hat{Z}+2 \hat{Z}^{\prime}+3 Z_{N}
\end{array}\right)
\end{aligned}
$$



Symmetrical components voltages in the symmetrical segments depend only on the corresponding component current and component impedance.

## Inductors and capacitors in ES

## a) Series inductors

- reactors are used to limit short-circuit currents
- used in grids up to 35 kV , single-phase ( $\mathrm{I}_{\mathrm{n}}>200 \mathrm{~A}$ ) or three-phase ( $\mathrm{I}_{\mathrm{n}}<200 \mathrm{~A}$ ), usually air-cooled (small L)
- the same design in LC filters for harmonics suppression



$$
\mathrm{R}_{\mathrm{tl}} \ll \mathrm{X}_{\mathrm{tl}}
$$



Input: $\mathrm{X}_{\mathrm{tt}} \%, \mathrm{~S}_{\mathrm{t}}, \mathrm{U}_{\mathrm{n}}, \mathrm{I}_{\mathrm{n}}$
Calculation: $\quad \mathrm{S}_{\mathrm{t}}=\sqrt{3} \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}}$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{tl}}=\frac{\mathrm{X}_{\mathrm{t} \%} \cdot \mathrm{U}_{\mathrm{n}}}{100 \cdot \sqrt{3} \cdot \mathrm{I}_{\mathrm{n}}}=\frac{\mathrm{X}_{\mathrm{t} \%} \cdot \mathrm{U}_{\mathrm{n}}^{2}}{100 \cdot \mathrm{~S}_{\mathrm{tl}}} \\
& \Delta \hat{\mathrm{U}}_{\mathrm{f}}=\hat{\mathrm{U}}_{\mathrm{fl}}-\hat{\mathrm{U}}_{\mathrm{f} 2}=\left(\mathrm{R}_{\mathrm{t}}+\mathrm{j} \mathrm{X}_{\mathrm{t}} \hat{\mathrm{I}}=\hat{\mathrm{Z}_{\mathrm{t}}} \hat{\mathrm{I}}\right. \\
& \quad \quad\left|\hat{\mathrm{Z}}_{\mathrm{tabc}}\right|=\left\lfloor\hat{\mathrm{Z}}_{\mathrm{t} 012}\right]=\hat{\mathrm{Z}}_{\mathrm{t}} \cdot[\mathrm{E}]-\text { 3ph inductor }
\end{aligned}
$$

$\rightarrow$ self-impedance $\hat{Z}_{t}$, mutual impedances 0
In fault-free state the inductor can be bypassed by a fuse to reduce a voltage drop.

## b) Shunt (parallel) inductors

- in the systems $U_{N}>220 \mathrm{kV}$, oil cooling, Fe core
- used to compensate capacitive (charging) currents of overhead lines for no-load or small loads $\rightarrow \mathrm{U}$ control:

$$
\begin{aligned}
& X_{\mathrm{t} 1}=\frac{\mathrm{U}_{\mathrm{tln}}}{\sqrt{3} \cdot \mathrm{I}_{\mathrm{tln}}}=\frac{\mathrm{U}_{\mathrm{tln}}^{2}}{\mathrm{Q}_{\mathrm{tln}}} \\
& \hat{\mathrm{Z}}_{\mathrm{t} 1}=\hat{\mathrm{Z}}_{\mathrm{tl} 1}=\hat{\mathrm{Z}}_{\mathrm{t} 2}, \mathrm{Z}_{\mathrm{t} \mid 0} \rightarrow \infty
\end{aligned}
$$


a) galvanic connection to the line

- Y winding, neutral point connected to the ground through V only during auto-reclosing (disturbances)
b) inductor connection to transformer tertiary winding
- lower voltage $\mathrm{U}_{\mathrm{n}} \approx 10 \div 35 \mathrm{kV}$
- problem with switch-off (purely inductive load)


Kočín 400 kV


## c) Neutral point inductors

- used in networks with indirectly earthed neutral point to compensate currents during ground fault
- value of the fault current does not depend on the ground fault position and the current is capacitive
- inductor reactance $X_{t l}$ should assure that the value of the inductive current is equal to the value of capacitive current $\rightarrow$ arc
 extinction
- for voltage 6 to 35 kV (rated at $\mathrm{U}_{\mathrm{ff}}$ ), reactor is single-phased!, oil cooling
- capacitive current change (network reconfiguration) $\rightarrow$ change in inductance (air gap correction in the magnetic circuit)
= arc-suppression coil (Peterson coil)
- it doesn't occur in positive and negative sequence component, $X_{0}=3 X_{t 1}$

6 MVAr, 13 kV , Sokolnice


## d) Series capacitors

- capacitors in ES = capacitor banks = series and parallel connection
- to improve voltage conditions (MV lines) or adjusting parameters (long HV lines)
- voltage and power of the capacitor varies with the load
- during short-circuits and overcurrents there appears overvoltage on the capacitor (very fast protections are used)


$$
\hat{\mathrm{U}}_{\mathrm{C}}=-\mathrm{j} \frac{1}{\omega \mathrm{C}} \hat{\mathrm{I}}
$$

- C must be insulated against the ground (insulated platforms) - C under voltage

- drawback - allows harmonic currents flow
- current distribution among parallel transmission lines could be achieved


## Canada 750 kV



## e) Shunt capacitors

- used in industrial networks up to 1 kV
- connection:
a) wye - Y
b) delta - $\Delta$ (D)


$$
\begin{array}{ll}
Q_{f}=U_{f} \cdot I_{C}=U_{f}^{2} \omega C_{Y} & Q_{f}=U \cdot I_{C}=U^{2} \omega C_{\Delta} \\
Q=3 U_{f}^{2} \omega C_{Y}=U^{2} \omega C_{Y} & Q=3 U^{2} \omega C_{\Delta}
\end{array}
$$

- with the same reactive power

$$
\mathrm{U}^{2} \omega \mathrm{C}_{\mathrm{Y}}=3 \mathrm{U}^{2} \omega \mathrm{C}_{\Delta} \rightarrow \mathrm{C}_{\mathrm{Y}}=3 \mathrm{C}_{\Delta} \rightarrow \text { rather delta }
$$



- reactive power compensation
a) $\mathrm{Q}_{\mathrm{C}}<\mathrm{Q}$ under-compensated
b) $\mathrm{Q}_{\mathrm{C}}=\mathrm{Q}$ exact compensation
c) $\mathrm{Q}_{\mathrm{C}}>$ Q over-compensated
$\rightarrow$ power factor improvement, lower power losses, voltage drops
- individual or group compensation could be used


## Transformer parameters




## a) Two-winding transformers

- winding connection Y, Yn, D, Z, Zn, V

Yzn - distribution TRF MV/LV up to 250 kVA , for unbalanced load
Dyn - distribution TRF MV/LV from 400 kVA
Yd - block TRF in power plants, the $3^{\text {rd }}$ harmonic suppression
Yna-d, YNynd - power grid transformer (400, 220, 110 kV )
YNyd - power grid transformer (e.g. 110/23/6,3 kV)

- equivalent circuit: T - network

$$
\hat{Z}_{\text {op }}=R_{p}+j X_{\text {op }} \quad \hat{Z}_{\text {os }}=R_{s}+j X_{\text {os }} \quad \hat{Y}_{q}=G_{q}-j B_{q}
$$



- each phase can be considered separately (unbalance is neglected), i.e. operational impedance (positive sequence) is used
- values of the parameters are calculated, then verified by no-load and short-circuit tests
o no-load test - secondary winding open, primary w. supplied by rated voltage, no-load current flows (lower than rated one)
o short-circuit test - secondary winding short-circuit, primary w. supplied by short-circuit voltage (lower than rated one) so that rated current flows

$$
\begin{aligned}
& \Delta \mathrm{P}_{0}(\mathrm{~W}), \mathrm{i}_{0}(\%), \Delta \mathrm{P}_{\mathrm{k}}(\mathrm{~W}), \mathrm{z}_{\mathrm{k}}=\mathrm{u}_{\mathrm{k}}(\%), \mathrm{S}_{\mathrm{n}}(\mathrm{VA}), \mathrm{U}_{\mathrm{n}}(\mathrm{~V}) \\
& \mathrm{u}_{\mathrm{k}} \approx 4 \div 14 \% \text { (increases with TRF power) } \\
& \mathrm{p}_{\mathrm{k}} \approx 0,1 \div 1 \% \text { (decreases with TRF power) } \\
& \mathrm{p}_{0} \approx 0,01 \div 0,1 \% \text { (decreases with TRF power) }
\end{aligned}
$$

- shunt branch:

$$
\begin{aligned}
& g_{q}=\frac{\Delta P_{0}}{S_{n}} \quad y_{q}=\frac{i_{0 \%}}{100} \quad b_{q}=\sqrt{y_{q}^{2}-g_{q}^{2}} \\
& \hat{y}_{q}=\frac{\Delta P_{0}}{S_{n}}-j \sqrt{\left(\frac{i_{0 \%}}{100}\right)^{2}-\left(\frac{\Delta P_{0}}{S_{n}}\right)^{2}}=g_{q}-j \cdot b_{q} \\
& \hat{Y}_{q}=\hat{y}_{q} \frac{S_{n}}{U_{n}^{2}}=\frac{S_{n}}{U_{n}^{2}}\left[\frac{\Delta P_{0}}{S_{n}}-j \sqrt{\left(\frac{i_{0 \%}}{100}\right)^{2}-\left(\frac{\Delta P_{0}}{S_{n}}\right)^{2}}\right]=G_{q}-j \cdot B_{q}
\end{aligned}
$$

- series branch:

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{k}}=\frac{\Delta \mathrm{P}_{\mathrm{k}}}{\mathrm{~S}_{\mathrm{n}}} \quad \mathrm{Z}_{\mathrm{k}}=\frac{\mathrm{u}_{\mathrm{k} \%}}{100} \quad \mathrm{x}_{\mathrm{k}}=\sqrt{\mathrm{z}_{\mathrm{k}}^{2}-\mathrm{r}_{\mathrm{k}}^{2}} \\
& \hat{\mathrm{Z}}_{\mathrm{k}}=\frac{\Delta \mathrm{P}_{\mathrm{k}}}{\mathrm{~S}_{\mathrm{n}}}+\mathrm{j} \sqrt{\left(\frac{\mathrm{u}_{\mathrm{k} \%}}{100}\right)^{2}-\left(\frac{\Delta \mathrm{P}_{\mathrm{k}}}{\mathrm{~S}_{\mathrm{n}}}\right)^{2}}=\mathrm{r}_{\mathrm{k}}+\mathrm{j} \cdot \mathrm{x}_{\mathrm{k}} \\
& \hat{Z}_{\mathrm{k}}=\hat{\mathrm{Z}}_{\mathrm{k}} \frac{\mathrm{U}_{\mathrm{n}}^{2}}{\mathrm{~S}_{\mathrm{n}}}=\frac{\mathrm{U}_{\mathrm{n}}^{2}}{\mathrm{~S}_{\mathrm{n}}}\left[\frac{\Delta \mathrm{P}_{\mathrm{k}}}{\mathrm{~S}_{\mathrm{n}}}+\mathrm{j} \sqrt{\left(\frac{\mathrm{u}_{\mathrm{k} \%}}{100}\right)^{2}-\left(\frac{\Delta \mathrm{P}_{\mathrm{k}}}{\mathrm{~S}_{\mathrm{n}}}\right)^{2}}\right]=\mathrm{R}_{\mathrm{k}}+\mathrm{j} \cdot \mathrm{X}_{\mathrm{k}} \\
& \hat{Z}_{\sigma p s}=\hat{Z}_{\mathrm{k}}=\left(\mathrm{R}_{\mathrm{p}}+\mathrm{R}_{\mathrm{s}}\right)+\mathrm{j}\left(\mathrm{X}_{\sigma p}+\mathrm{X}_{\sigma \mathrm{s}}\right)
\end{aligned}
$$

- we choose $\hat{Z}_{\sigma p}=0,5 \hat{Z}_{\sigma p s}=\hat{Z}_{\sigma s}$
- this division is not physically correct (different leakage flows, different resistances)
- usage of T-network to calculate meshed systems is not appropriate sometimes (it adds another node)
- therefore calculation using $\pi$-network, $\Gamma$-network



## b) Three-winding transformers

- parameters are calculated, then verified by noload and short-circuit measurements (3 shortcircuit tests: 1 winding no-load, 1 short-circuit and 1 supplied):

$$
\begin{aligned}
& \Delta \mathrm{P}_{0}(\mathrm{~W}), \mathrm{i}_{0}(\%), \Delta \mathrm{P}_{\mathrm{k}}(\mathrm{~W}), \mathrm{z}_{\mathrm{K}}=\mathrm{u}_{\mathrm{K}}(\%), \\
& \mathrm{S}_{\mathrm{n}}(\mathrm{VA}), \mathrm{U}_{\mathrm{n}}(\mathrm{~V})
\end{aligned}
$$



- powers needn't be the same: e.g. $\mathrm{S}_{\mathrm{Sn}}=\mathrm{S}_{\mathrm{Tn}}=0,5 \cdot \mathrm{~S}_{\mathrm{Pn}}$
- equivalent circuit:

- no-load measurement: related to the primary rated power and rated voltage $S_{P n}$ a $U_{\text {Pn }}$ (supplied)

$$
\hat{y}_{q}=g_{q}-j \cdot b_{q}=\frac{\Delta P_{0}}{S_{P n}}-j \sqrt{\left(\frac{i_{0 \%}}{100}\right)^{2}-\left(\frac{\Delta P_{0}}{S_{P n}}\right)^{2}}
$$

denominated value ( S ) - related to UPn

$$
\hat{Y}_{q}=\hat{y}_{q} \frac{S_{P_{n}}}{U_{P_{n}}^{2}}=G_{q}-j \cdot B_{q}=\frac{S_{P_{n}}}{U_{P_{n}}^{2}}\left[\frac{\Delta P_{0}}{S_{P_{n}}}-j \sqrt{\left(\frac{i_{0 \%}}{100}\right)^{2}-\left(\frac{\Delta P_{0}}{S_{P_{n}}}\right)^{2}}\right]
$$

- short-circuit measurement: (3x, supply - short-circuit - no-load) provided: $\mathrm{S}_{\mathrm{Pn}} \neq \mathrm{S}_{\mathrm{Sn}} \neq \mathrm{S}_{\mathrm{Tn}}$

| measurement between | $\mathrm{P}-\mathrm{S}$ | $\mathrm{P}-\mathrm{T}$ | $\mathrm{S}-\mathrm{T}$ |
| :--- | :---: | :---: | :---: |
| short-circuit losses (W) | $\Delta \mathrm{P}_{\mathrm{kPS}}$ | $\Delta \mathrm{P}_{\mathrm{kPT}}$ | $\Delta \mathrm{P}_{\mathrm{kST}}$ |
| short-circuit voltage (\%) | $\mathrm{u}_{\mathrm{kPS}}$ | $\mathrm{u}_{\mathrm{kPT}}$ | $\mathrm{u}_{\mathrm{kST}}$ |
| measurement corresponds to power (VA) | $\mathrm{S}_{\mathrm{Sn}}$ | $\mathrm{S}_{\mathrm{Tn}}$ | $\mathrm{S}_{\mathrm{Tn}}$ |

short-circuit tests S - T:
parameter to be found:

$$
\begin{aligned}
& \hat{Z}_{S T}=\hat{Z}_{\sigma S}+\hat{Z}_{\sigma T}\left(\hat{Z}_{\sigma S}=R_{S}+j \cdot X_{\sigma S}\right) \text { - recalculated to } U_{P n} \\
& \hat{Z}_{S T}=\hat{Z}_{\sigma S}+\hat{Z}_{\sigma T}-\text { recalculated to } U_{P n}, S_{P n}
\end{aligned}
$$

$\Delta \mathrm{P}_{\mathrm{k}}$ for $\mathrm{I}_{\mathrm{Tn}} \rightarrow \Delta \mathrm{P}_{\mathrm{kST}}=3 \cdot \mathrm{R}^{+}{ }_{\mathrm{ST}} \cdot \mathrm{I}^{2} \mathrm{Tn}, \quad \mathrm{I}_{\mathrm{Tn}}=\frac{\mathrm{S}_{\mathrm{Tn}}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{Tn}}}$
$\mathrm{R}^{+}$st....resistance of secondary and tertiary windings (related to $\mathrm{U}_{\mathrm{Tn}}$ )

$$
\begin{aligned}
& \mathrm{R}^{+}{ }_{\mathrm{ST}}=\frac{\Delta \mathrm{P}_{\mathrm{kST}}}{\mathrm{~S}_{\mathrm{Tn}}^{2}} \cdot \mathrm{U}_{\mathrm{Tn}}^{2} \\
& \mathrm{R}_{\mathrm{ST}}=\mathrm{R}^{+}{ }_{\mathrm{ST}} \cdot \frac{\mathrm{U}_{\mathrm{Pn}}^{2}}{\mathrm{U}_{\mathrm{Tn}}^{2}} \rightarrow \mathrm{R}_{\mathrm{ST}}=\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{T}}=\frac{\Delta \mathrm{P}_{\mathrm{kST}}}{\mathrm{~S}_{\mathrm{Tn}}^{2}} \cdot \mathrm{U}_{\mathrm{Pn}}^{2}
\end{aligned}
$$

$\mathrm{R}_{\mathrm{S}}\left(\mathrm{R}_{\mathrm{T}}\right)$...resistance of sec. and ter. windings recalculated to primary

$$
\mathrm{r}_{\mathrm{ST}}=\mathrm{R}_{\mathrm{ST}} \cdot \frac{\mathrm{~S}_{\mathrm{Pn}}}{\mathrm{U}_{\mathrm{Pn}}^{2}}=\frac{\Delta \mathrm{P}_{\mathrm{kST}}}{\mathrm{~S}_{\mathrm{Tn}}^{2}} \cdot \mathrm{~S}_{\mathrm{Pn}}
$$

- impedance:

$$
\begin{aligned}
& \mathrm{z}_{\mathrm{ST}}=\frac{\mathrm{u}_{\mathrm{kST} \%}}{100} \cdot \frac{\mathrm{~S}_{\mathrm{Pn}}}{\mathrm{~S}_{\mathrm{Tn}}}, \mathrm{Z}_{\mathrm{ST}}=\mathrm{z}_{\mathrm{ST}} \cdot \frac{\mathrm{U}_{\mathrm{Pn}}^{2}}{\mathrm{~S}_{\mathrm{Pn}}}=\frac{\mathrm{u}_{\mathrm{kST} \%}}{100} \cdot \frac{\mathrm{U}_{\mathrm{Pn}}^{2}}{\mathrm{~S}_{\mathrm{Tn}}} \\
& \hat{\mathrm{z}}_{\mathrm{ST}}=\mathrm{r}_{\mathrm{ST}}+\mathrm{j} \cdot \mathrm{x}_{\mathrm{ST}}, \mathrm{x}_{\mathrm{ST}}=\sqrt{\mathrm{z}_{\mathrm{ST}}^{2}-\mathrm{r}_{\mathrm{ST}}^{2}}, \quad \mathrm{x}_{\mathrm{ST}}=\mathrm{x}_{\sigma \mathrm{S}}+\mathrm{x}_{\sigma \mathrm{T}}
\end{aligned}
$$

- based on the derived relations we can write:

P-S:

$$
\begin{aligned}
& \hat{Z}_{\mathrm{PS}}=\mathrm{r}_{\mathrm{PS}}+\mathrm{j} \cdot \mathrm{x}_{\mathrm{PS}}=\frac{\Delta \mathrm{P}_{\mathrm{kPS}}}{\mathrm{~S}_{\mathrm{Sn}}^{2}} \cdot \mathrm{~S}_{\mathrm{Pn}}+\mathrm{j} \cdot \sqrt{\left(\frac{\mathrm{u}_{\mathrm{kPS} \%}}{100} \cdot \frac{\mathrm{~S}_{\mathrm{Pn}}}{\mathrm{~S}_{\mathrm{Sn}}}\right)^{2}-\left(\frac{\Delta \mathrm{P}_{\mathrm{kPS}}}{\mathrm{~S}_{\mathrm{Sn}}^{2}} \cdot \mathrm{~S}_{\mathrm{Pn}}\right)^{2}} \\
& \hat{Z}_{\mathrm{PS}}=R_{\mathrm{PS}}+j \cdot X_{\mathrm{PS}}=\frac{\Delta \mathrm{P}_{\mathrm{kPS}}}{\mathrm{~S}_{\mathrm{Sn}}^{2}} \cdot \mathrm{U}_{\mathrm{Pn}}^{2}+\mathrm{j} \cdot \sqrt{\left(\frac{\mathrm{u}_{\mathrm{kPS} \%}}{100} \cdot \frac{\mathrm{U}_{\mathrm{Pn}}^{2}}{\mathrm{~S}_{\mathrm{Sn}}}\right)^{2}-\left(\frac{\Delta \mathrm{P}_{\mathrm{kPS}}}{\mathrm{~S}_{\mathrm{Sn}}^{2}} \cdot \mathrm{U}_{\mathrm{Pn}}^{2}\right)^{2}}
\end{aligned}
$$

- analogous for $\mathrm{P}-\mathrm{T}$ and $\mathrm{S}-\mathrm{T}$
- leakage reactances for $\mathrm{P}, \mathrm{S}, \mathrm{T}$ :

$$
\begin{aligned}
& \hat{Z}_{\sigma \mathrm{P}}=\mathrm{R}_{\mathrm{P}}+\mathrm{j} \cdot \mathrm{X}_{\sigma \mathrm{CP}}=0,5 \cdot\left(\hat{\mathrm{Z}}_{\mathrm{PS}}+\hat{\mathrm{Z}}_{\mathrm{PT}}-\hat{\mathrm{Z}}_{\mathrm{ST}}\right) \\
& \hat{Z}_{\sigma \mathrm{S}}=\mathrm{R}_{\mathrm{S}}+\mathrm{j} \cdot \mathrm{X}_{\sigma \mathrm{S}}=0,5 \cdot\left(\hat{\mathrm{Z}}_{\mathrm{PS}}+\hat{\mathrm{Z}}_{\mathrm{ST}}-\hat{\mathrm{Z}}_{\mathrm{PT}}\right) \\
& \hat{\mathrm{Z}}_{\sigma \mathrm{T}}=\mathrm{R}_{\mathrm{T}}+\mathrm{j} \cdot \mathrm{X}_{\sigma \mathrm{T}}=0,5 \cdot\left(\hat{\mathrm{Z}}_{\mathrm{PT}}+\hat{Z}_{\mathrm{ST}}-\hat{Z}_{\mathrm{PS}}\right)
\end{aligned}
$$

- knowledge of the series impedances and shunt admittances allows to study voltage and power conditions of 3-winding transformers
- mentioned impedances are valid for positive and negative sequences


## Transformers zero sequence impedances



Series parameters are the same as for the positive sequence, the shunt always need to be determined.
Assumptions:

- Zero sequence voltage supplies the primary winding.
- The relative values are related to $U_{P n}$ and $S_{P n}$.
- We distinguish free and tied magnetic flows (shell x core TRF).
$\mathrm{Z}_{0}$ depends on the winding connection.
note: reluctance, inductance
magnetic resistance (reluctance)

$$
\mathrm{R}_{\mathrm{m}}=\frac{1}{\mu} \frac{1}{\mathrm{~S}} \quad \text { analogy } \quad \mathrm{R}_{\mathrm{e}}=\frac{1}{\gamma} \frac{1}{\mathrm{~S}}=\rho \frac{1}{\mathrm{~S}}
$$

magnetic flux (Hopkinson's law)

$$
\begin{aligned}
& \Phi=\frac{\mathrm{N} \cdot \mathrm{I}}{\mathrm{R}_{\mathrm{m}}} \\
& \mathrm{~L}=\frac{\Phi_{\mathrm{c}}}{\mathrm{I}}=\frac{\mathrm{N} \cdot \Phi}{\mathrm{I}}=\frac{\mathrm{N}^{2}}{\mathrm{R}_{\mathrm{m}}} \\
& \mu_{\mathrm{Fe}} \gg \mu_{0} \Rightarrow \mathrm{R}_{\mathrm{mFe}} \ll \mathrm{R}_{\mathrm{m} 0} \Rightarrow \mathrm{~L}_{\mathrm{Fe}} \gg \mathrm{~L}_{\sigma}
\end{aligned}
$$

TRF magnetic circuit

$$
\Phi=\Phi_{\mathrm{h}}+\Phi_{\sigma}=\frac{\mathrm{N} \cdot \mathrm{I}}{\mathrm{R}_{\mathrm{mFe}}}+\frac{\mathrm{N} \cdot \mathrm{I}}{\mathrm{R}_{\mathrm{m} 0}}=\frac{\mathrm{L}_{\mathrm{Fe}} \cdot \mathrm{I}}{\mathrm{~N}}+\frac{\mathrm{L}_{\sigma} \cdot \mathrm{I}}{\mathrm{~N}}=\frac{\mathrm{I}}{\mathrm{~N}}\left(\mathrm{~L}_{\mathrm{Fe}}+\mathrm{L}_{\sigma}\right)
$$

## a) $\mathbf{Y} /$ any connection

$$
\begin{aligned}
& 3 \mathrm{i}_{0}=0 \\
& \mathrm{z}_{0}=\frac{\mathrm{u}_{0}}{\mathrm{i}_{0}} \rightarrow \infty \\
& \mathrm{Z}_{0 \mathrm{p} 0} \rightarrow \infty \\
& \mathrm{Z}_{0 \mathrm{ps}} \rightarrow \infty
\end{aligned}
$$


b) D / any connection

Zero sequence voltage is attached to $\mathrm{D} \rightarrow$ voltage at each phase $\mathrm{u}_{0}-\mathrm{u}_{0}=0 \rightarrow \mathrm{i}_{\mathrm{a}}=\mathrm{i}_{\mathrm{b}}=\mathrm{i}_{\mathrm{c}}=0 \rightarrow \mathrm{i}_{0}=0$

$$
\begin{aligned}
& \mathrm{z}_{0}=\frac{\mathrm{u}_{0}}{\mathrm{i}_{0}} \rightarrow \infty \\
& \mathrm{Z}_{0 \mathrm{p} 0} \rightarrow \infty \\
& \mathrm{Z}_{0 \mathrm{ps}} \rightarrow \infty
\end{aligned}
$$



## c) $\mathrm{YN} / \mathrm{D}$

Currents in the primary winding $i_{0}$ induce currents $i_{0}{ }^{\prime}$ in the secondary winding to achieve magnetic balance.
Currents $\mathrm{i}_{0}{ }^{\prime}$ in the secondary winding are short-closed and do not flow further into the grid.

$$
\hat{\mathrm{z}}_{\mathrm{op} 0}=\hat{\mathrm{z}}_{\mathrm{op}}+\hat{\mathrm{z}}_{\mathrm{q} 0}
$$

$$
\hat{z}_{0}=\frac{\hat{u}_{0}}{\hat{\mathrm{i}}_{0}}=\hat{\mathrm{z}}_{\mathrm{\sigma p}}+\frac{\hat{\mathrm{z}}_{\text {os }} \cdot \hat{\mathrm{z}}_{\mathrm{q} 0}}{\hat{\mathrm{z}}_{\mathrm{os}}+\hat{\mathrm{z}}_{\mathrm{q} 0}}
$$

shell

$$
\hat{\mathrm{z}}_{\mathrm{q} 0}=\hat{\mathrm{y}}_{\mathrm{q}}^{-1} \gg \hat{\mathrm{z}}_{\text {os }} \rightarrow \hat{\mathrm{z}}_{0} \approx \hat{\mathrm{z}}_{\text {}}^{\text {pps }}=\hat{\mathrm{z}}_{1 \mathrm{k}}
$$

3-core

$$
\left|\hat{\mathrm{z}}_{\mathrm{q} 0}\right|<\left|\hat{\mathrm{y}}_{\mathrm{q}}^{-1}\right| \rightarrow\left|\hat{\mathrm{z}}_{0}\right| \approx(0,7 \div 0,9)\left|\hat{\mathrm{z}}_{\text {ops }}\right|
$$



## d) $\mathbf{Y N} / \mathbf{Y}$

Zero sequence current can't flow through the secondary winding. Current io corresponds to the magnetization current.

$$
\begin{aligned}
& \mathrm{z}_{\text {ops }} \rightarrow \infty \\
& \hat{\mathrm{z}}_{0}=\hat{\mathrm{z}}_{\mathrm{op} 0}=\hat{\mathrm{z}}_{\mathrm{op}}+\hat{\mathrm{z}}_{\mathrm{q} 0} \\
& \text { shell } \\
& \quad \hat{\mathrm{z}}_{\mathrm{q} 0}=\hat{\mathrm{y}}_{\mathrm{q}}^{-1} \rightarrow \mathrm{z}_{0} \rightarrow \infty
\end{aligned}
$$

3-core

$$
\left|\hat{z}_{\mathrm{q} 0}\right|<\left|\hat{\mathrm{y}}_{\mathrm{q}}^{-1}\right| \rightarrow\left|\hat{z}_{0}\right| \approx(0,3 \div 1)
$$


e) $\mathbf{Y N} / \mathbf{Y N}$

If element with YN or ZN behind TRF $\rightarrow$ points a-b are connected $\rightarrow$ as the positive sequence.
If element with $\mathrm{Y}, \mathrm{Z}$ or D behind TRF $\rightarrow \mathrm{a}-\mathrm{b}$ are disconnected $\rightarrow$ as YN / Y.


## f) ZN / any connection

Currents $i_{0}$ induce mag. balance on the core themselves $\rightarrow$ only leakages between the halves of the windings.

$$
\begin{aligned}
& \mathrm{z}_{0 \mathrm{ps}} \rightarrow \infty \\
& \hat{\mathrm{z}}_{0}=\hat{\mathrm{z}}_{\mathrm{op0} 0} \approx(0,1 \div 0,3) \hat{\mathrm{z}}_{\mathrm{ops}} \\
& \mathrm{r}_{0}=\mathrm{r}_{\mathrm{p}}
\end{aligned}
$$


g) impedance in the neutral point

Current flowing through the neutral point is $3 \mathrm{i}_{0}$.
Voltage drop: $\quad \Delta \hat{\mathrm{u}}_{\mathrm{uz}}=\hat{\mathrm{z}}_{\mathrm{u}} \cdot 3 \hat{\mathrm{i}}_{0}=3 \hat{\mathrm{z}}_{\mathrm{u}} \cdot \hat{\mathrm{i}}_{0}$
$\rightarrow$ in the model $3 \hat{z}_{u}$ in series with the leakage reactance

## h) three-winding TRF



## System equivalent

Impedance (positive sequence) is given by the nominal voltage and shortcircuit current (power).
Three-phase (symmetrical) short-circuit: $\mathrm{S}_{\mathrm{k}}^{\prime \prime}$ (MVA), $\mathrm{I}_{\mathrm{k}}^{\prime \prime}(\mathrm{kA})$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{k}}^{\prime \prime}=\sqrt{3} \mathrm{U}_{\mathrm{n}} \mathrm{I}_{\mathrm{k}}^{\prime \prime} \\
& \mathrm{Z}_{\mathrm{s}}=\frac{\mathrm{U}_{\mathrm{n}}^{2}}{\mathrm{~S}_{\mathrm{k}}^{\prime \prime}}=\frac{\mathrm{U}_{\mathrm{n}}}{\sqrt{3} \cdot \mathrm{I}_{\mathrm{k}}^{\prime \prime}}
\end{aligned}
$$

CR: $\quad 400 \mathrm{kV} \quad \mathrm{S}_{\mathrm{k}}^{\prime \prime} \approx(6000 \div 30000) \mathrm{MVA} \quad \mathrm{I}_{\mathrm{k}}^{\prime \prime} \approx(9 \div 45) \mathrm{kA}$
$220 \mathrm{kV} \quad \mathrm{S}_{\mathrm{k}}^{\prime \prime} \approx(2000 \div 12000)$ MVA $\quad \mathrm{I}_{\mathrm{k}}^{\prime \prime} \approx(2 \div 30) \mathrm{kA}$
$110 \mathrm{kV} \quad \mathrm{S}_{\mathrm{k}}^{\prime \prime} \approx(100 \mathrm{x} \div 3000) \mathrm{MVA} \quad \mathrm{I}_{\mathrm{k}}^{\prime \prime} \approx(\mathrm{x} \div 15) \mathrm{kA}$

