Ground fault in three-phase systems

MV systems without the directly grounded neutral point (distribution systems) → single-phase fault of a different character than short-circuits (small capacitive current).

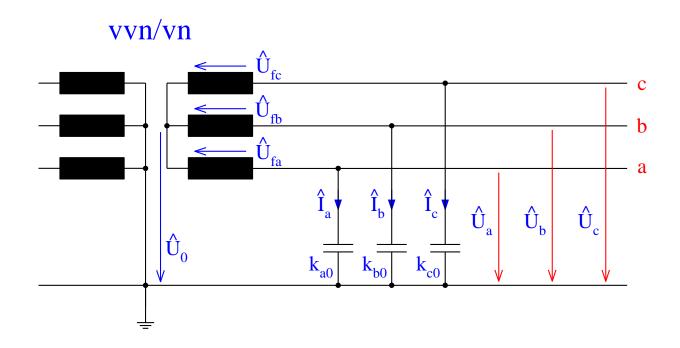
Fault current proportional to the system extent.

 $I_p > 5 A \rightarrow \text{arc formation} \rightarrow \text{conductors, towers, insulators burning} \rightarrow 2\text{ph, 3ph short-circuits (mainly at cables)}$

Interrupted GF \rightarrow overvoltage up to 4÷5 Uph

GF compensation → uninterrupted system operation (to the failure clearance, short supply break), arc self-extinguishing

Ground fault


- resistive (100x Ω), metal and arc (x Ω)
- momentary (up to 0,5 s), short-term (up to 5 min), interrupted (repeating), durable (x hours)

Conditions in a system with insulated neutral point

Presumptions: considered only capacities, symmetrical source voltage, open-circuit system

Systems of a small extent, $I_p < 10 A$.

Before the fault

$$\hat{\mathbf{U}}_{a} - \hat{\mathbf{U}}_{0} - \hat{\mathbf{U}}_{fa} = 0$$

$$\hat{\mathbf{U}}_{b} - \hat{\mathbf{U}}_{0} - \hat{\mathbf{U}}_{fb} = 0$$

$$\hat{\mathbf{U}}_{c} - \hat{\mathbf{U}}_{0} - \hat{\mathbf{U}}_{fc} = 0$$

$$\hat{I}_{a} = j\omega k_{a0} \hat{U}_{a}$$

$$\hat{I}_{b} = j\omega k_{b0} \hat{U}_{b}$$

$$\hat{I}_{c} = j\omega k_{c0} \hat{U}_{c}$$

System with insulated neutral point

$$\hat{\mathbf{I}}_{\mathbf{a}} + \hat{\mathbf{I}}_{\mathbf{b}} + \hat{\mathbf{I}}_{\mathbf{c}} = 0$$

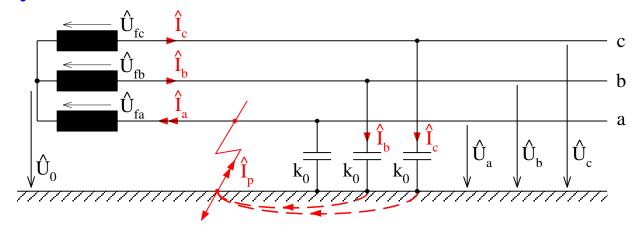
Symmetrical source

$$\hat{\mathbf{U}}_{fb} = \hat{\mathbf{a}}^2 \hat{\mathbf{U}}_{fa}, \ \hat{\mathbf{U}}_{fc} = \hat{\mathbf{a}} \hat{\mathbf{U}}_{fa}$$

Neutral point voltage

$$\hat{\mathbf{U}}_{0} = -\frac{\mathbf{k}_{a0} + \hat{\mathbf{a}}^{2} \mathbf{k}_{b0} + \hat{\mathbf{a}} \mathbf{k}_{c0}}{\mathbf{k}_{a0} + \mathbf{k}_{b0} + \mathbf{k}_{c0}} \hat{\mathbf{U}}_{fa}$$

Unbalanced capacities


$$\hat{\mathbf{U}}_0 \neq \mathbf{0}$$

Symmetrical capacities

$$k_{a0} = k_{b0} = k_{c0} = k_0 \implies \hat{U}_0 = 0$$

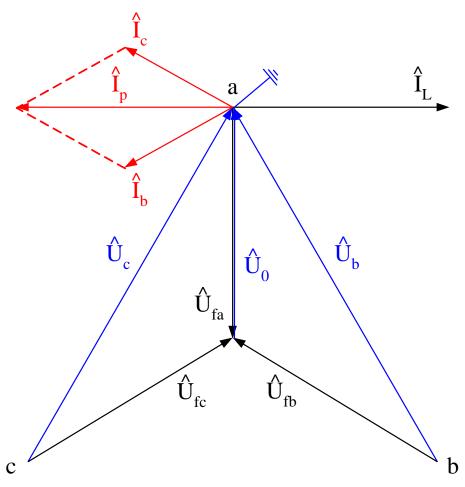
Perfect (metal) durable grounf fault

Symmetrical system

Fault current composed of 2 capacitive currents in the disaffected phases.

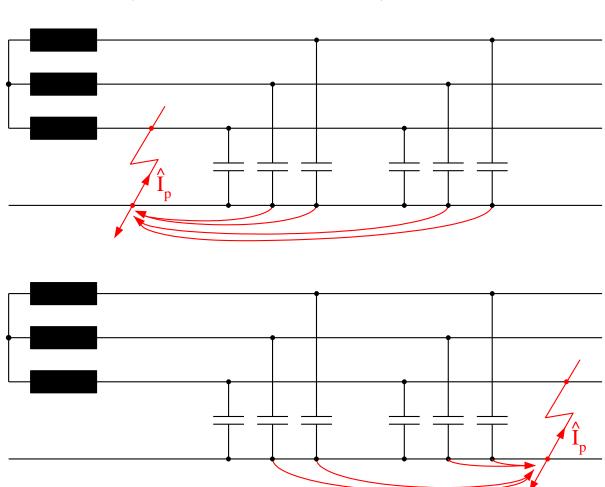
$$\hat{\mathbf{U}}_{a} = 0$$

$$\hat{\mathbf{I}}_{p} = \hat{\mathbf{I}}_{a} = \hat{\mathbf{I}}_{b} + \hat{\mathbf{I}}_{c}$$


$$\begin{split} \hat{I}_{b} &= j\omega k_{0}\hat{U}_{b} & \hat{I}_{c} = j\omega k_{0}\hat{U}_{c} \\ \hat{U}_{a} - \hat{U}_{0} - \hat{U}_{fa} &= 0 \quad \Rightarrow \quad \hat{U}_{0} = -\hat{U}_{fa} \quad ! \\ \hat{U}_{b} - \hat{U}_{0} - \hat{U}_{fb} &= 0 \quad \Rightarrow \hat{U}_{b} = \hat{U}_{0} + \hat{U}_{fb} = \left(-1 + \hat{a}^{2}\right)\hat{U}_{fa} = -\sqrt{3}e^{j30^{\circ}}\hat{U}_{fa} \quad ! \\ \hat{U}_{c} - \hat{U}_{0} - \hat{U}_{fc} &= 0 \quad \Rightarrow \hat{U}_{c} = \hat{U}_{0} + \hat{U}_{fc} = \left(-1 + \hat{a}\right)\hat{U}_{fa} = -\sqrt{3}e^{-j30^{\circ}}\hat{U}_{fa} \quad ! \end{split}$$

 → affected phase voltage - zero neutral point voltage - phase disaffected phases voltage - line-to-line

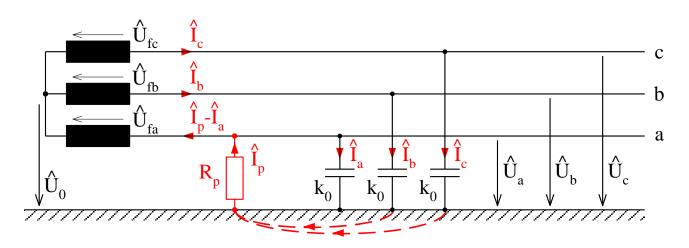
Fault ground current


$$\begin{split} \hat{I}_{p} &= \hat{I}_{b} + \hat{I}_{c} = j\omega k_{0} (\hat{U}_{b} + \hat{U}_{c}) \\ &= j\omega k_{0} [(-1 + \hat{a}^{2}) + (-1 + \hat{a})] \hat{U}_{fa} \\ &= j\omega k_{0} (-2 + \hat{a}^{2} + \hat{a} + 1 - 1) \hat{U}_{fa} \\ \hat{I}_{p} &= -3j\omega k_{0} \hat{U}_{fa} = 3j\omega k_{0} \hat{U}_{0} \quad (A; s^{-1}, F, V) \end{split}$$

Voltage and current conditions

Fault current depends on the total system extent and almost doesn't depend on the failure point distance from the transformer.

$$I_p = 3\omega k_{01} I U_f$$
 (A; s⁻¹, F/km, km, V)



Note: overhead 22kV – current ca. 0,06 A/km

cabels 22kV – current ca. 4 A/km

Note: MV system can be operated also with GF, on LV level again 3-phase supplying due to transformers Y/D/yn

Resistive ground fault

Affected phase voltage non-zero

$$\hat{I}_{p} = -\hat{U}_{a}/R_{p} = \hat{I}_{a} + \hat{I}_{b} + \hat{I}_{c}$$

Neutral point voltage

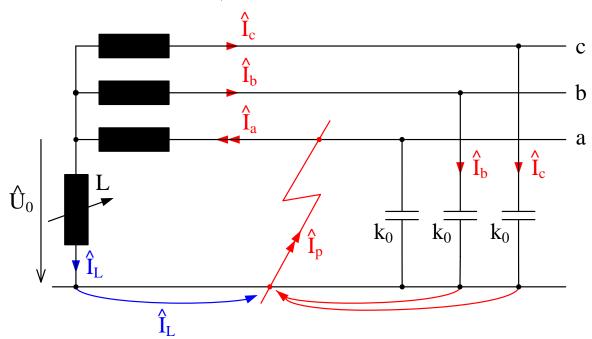
$$\hat{\mathbf{U}}_{0} = -\frac{j\omega(\mathbf{k}_{a0} + \hat{a}^{2}\mathbf{k}_{b0} + \hat{a}\mathbf{k}_{c0}) + \mathbf{R}_{p}^{-1}}{j\omega(\mathbf{k}_{a0} + \mathbf{k}_{b0} + \mathbf{k}_{c0}) + \mathbf{R}_{p}^{-1}}\hat{\mathbf{U}}_{fa}$$

Circle equation in the Gauss plane

$$\hat{\mathbf{U}}_{0} = -\frac{\hat{\mathbf{A}} + \mathbf{R}_{p}^{-1}}{\hat{\mathbf{B}} + \mathbf{R}_{p}^{-1}} \hat{\mathbf{U}}_{fa}$$

$$\mathbf{R}_{p} = 0 \qquad \hat{\mathbf{U}}_{0} = -\hat{\mathbf{U}}_{fa}$$

$$\begin{split} R_{p} &= 0 & \hat{U}_{0} = -\hat{U}_{fa} \\ R_{p} &= \infty & \hat{U}_{0} = 0 \text{ (for symmetrical capacities)} \end{split}$$



Disaffected voltage can be higher than line-to-line value.

Ground current compensation

Compensation in system where $I_p > 5A$ - suitable $I_p > 10A$ - necessary

Method: Continuously controlled arc-suppression coil between the transformer neutral point and the ground (at transformers with D winding by means of neutral coil with Y)

Faultless state

$$U_0 = 0$$

 $U_0 = 0$ - symmetrical capacities

$$U_0 < 0.01 U_f$$

 $U_0 < 0.01 U_f$ - usual unbalance

Perfect ground fault

$$\hat{\mathbf{U}}_0 = -\hat{\mathbf{U}}_{\mathrm{fa}}$$

Arc-suppression coil current

$$\hat{\mathbf{I}}_{L} = -\mathbf{j} \frac{\hat{\mathbf{U}}_{0}}{\omega L}$$

Total compensation

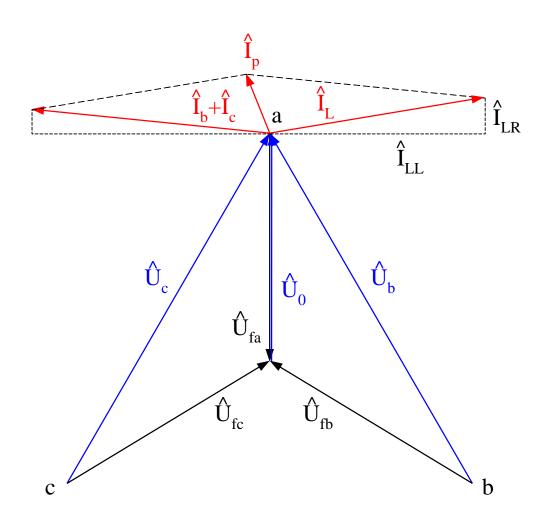
$$\hat{I}_{L} = -\hat{I}_{p}$$

$$-j\frac{\hat{U}_{0}}{\omega L} = -3j\omega k_{0}\hat{U}_{0}$$

Hence

$$L = \frac{1}{3\omega^2 k_0}$$
 (H; s⁻¹, F)

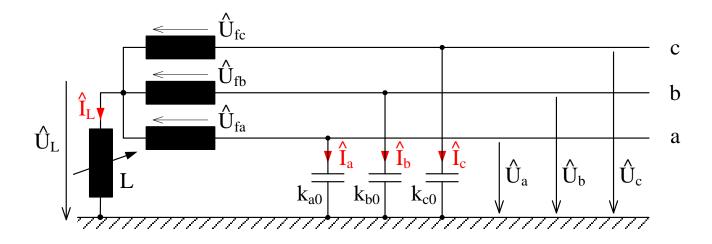
Coil power (reactive inductive)


$$\hat{S} = \hat{U}_0 \hat{I}_L^* = 3j\omega k_0 \hat{U}_0 \hat{U}_0^* = j\omega k_0 U^2 = Q_L$$

Ideal compensation: $I_p = 0$ in the fault point

Real situation: residual current (small active)

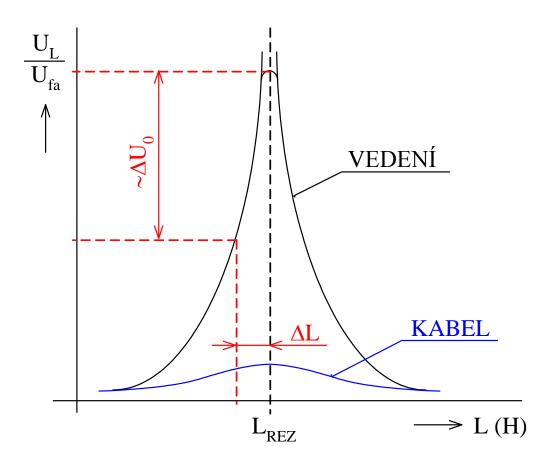
- inaccurate inductance setting
- uncompensatable active component (power line conductance, coil R)
- higher harmonics


$$\hat{\mathbf{I}}_{p} = \left[\frac{1}{\mathbf{R}_{L}} + 3\mathbf{G}_{0} + \mathbf{j} \left(3\omega \mathbf{k}_{0} - \frac{1}{\omega \mathbf{L}} \right) \right] \hat{\mathbf{U}}_{0}$$

Arc-suppression coil tuning

L dimensioning by calculation, setting in the faultless state (for given system configuration).

Tuning is done by magnetic circuit change by means of motor (air gap).


Coil voltage

$$\hat{\mathbf{U}}_{L} = \frac{-\omega^{2} L \left(k_{a0} + \hat{a}^{2} k_{b0} + \hat{a} k_{c0}\right)}{\omega^{2} L \left(k_{a0} + k_{b0} + k_{c0}\right) - 1} \hat{\mathbf{U}}_{fa}$$

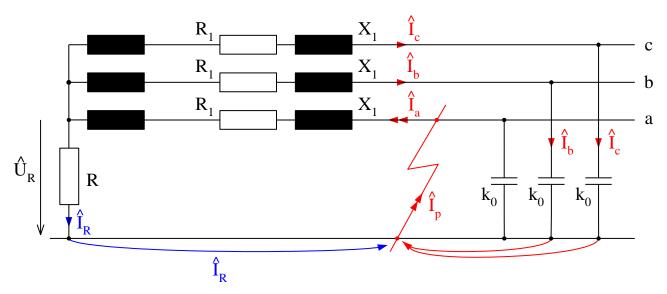
Resonance dependence

$$\left| \frac{\mathbf{U_L}}{\mathbf{U_{fa}}} \right| = \mathbf{f(L)}$$

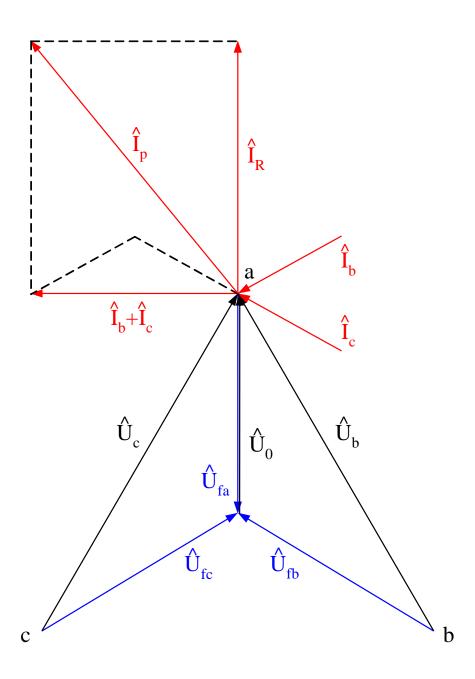
$$\mathbf{L_{REZ}} = \frac{1}{\omega^2 (\mathbf{k_{a0}} + \mathbf{k_{b0}} + \mathbf{k_{c0}})}$$

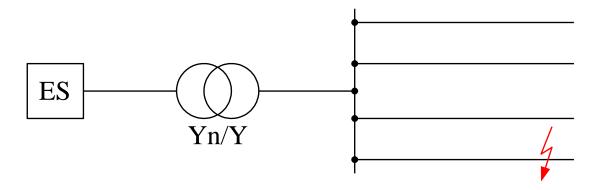
Overhead power lines

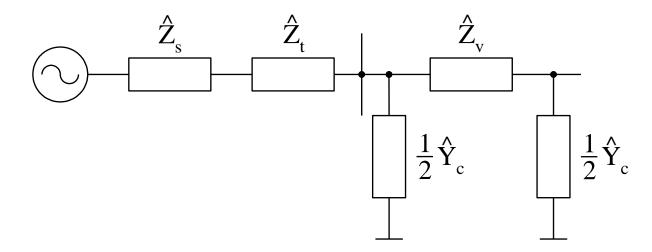
- higher capacitive unbalance
- maximum limited by resistances
- L_{REZ} compensates GF totally \rightarrow resonance coil
- setting by U_L measuring
- with small R the transformer neutral point strained too much in resonance → intended (small) detuning → dissonance coil


Cable power lines

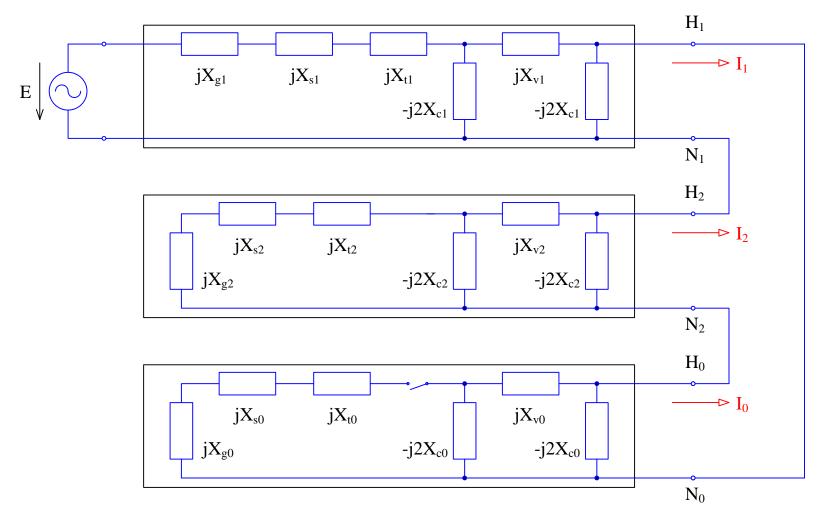
• small capacitive unbalance \rightarrow flat curve \rightarrow difficult tuning


Cable systems grounded with the resistance

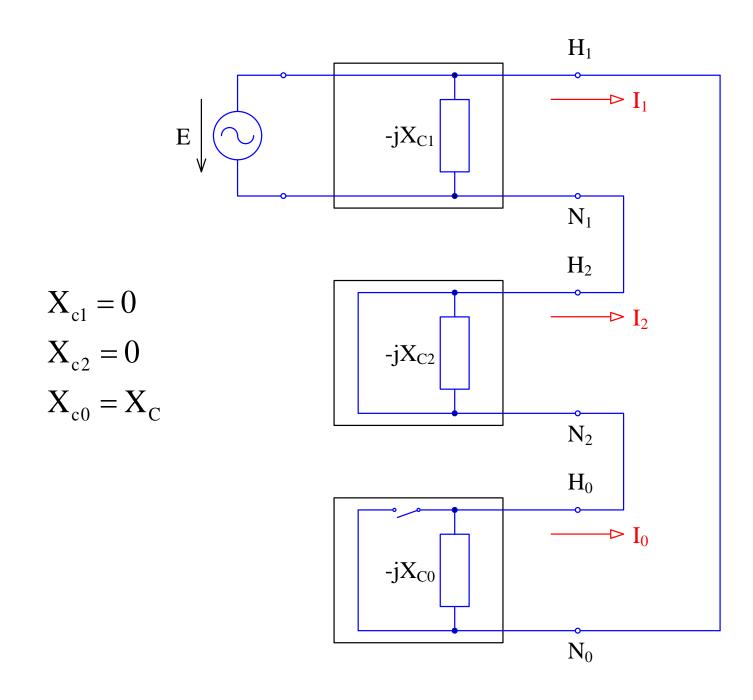

During the fault


- neutral point voltage almost phase value
- I_p uncompensated
- I_p depend on the system extent x decreases with the distance from transformer (short-circuit character)
- R value can influence I_p size and character

$$\hat{\mathbf{I}}_{P} = -(1/R + j3\omega \mathbf{k}_{0})\mathbf{U}_{f}$$



<u>Permanent ground connection – components</u>



Char. equations: $U_a = 0$, $I_b = 0$, $I_c = 0$

$$\hat{Y}_{c}^{-1} = \hat{Z}_{c} = -jX_{c} >> |\hat{Z}_{v}|, |\hat{Z}_{t}|, |\hat{Z}_{s}|$$

$$(I_{120}) = (T^{-1})(I_{ABC}) = \frac{1}{3} \begin{pmatrix} 1 & \hat{a} & \hat{a}^2 \\ 1 & \hat{a}^2 & \hat{a} \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \hat{I}_A \\ 0 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} \hat{I}_A \\ \hat{I}_A \\ \hat{I}_A \end{pmatrix}$$

$$\hat{\mathbf{I}}_{1} = \hat{\mathbf{I}}_{2} = \hat{\mathbf{I}}_{0} = \frac{1}{3}\hat{\mathbf{I}}_{A} = \frac{\hat{\mathbf{E}}}{-j\mathbf{X}_{C}}$$

$$\hat{\mathbf{U}}_{1} = \hat{\mathbf{E}}$$

$$\hat{\mathbf{U}}_2 = \mathbf{0}$$

$$\hat{\mathbf{U}}_{0} = -\hat{\mathbf{E}}$$

- phase currents

$$\hat{I}_{A} = 3\hat{I}_{1}$$
 $\hat{I}_{B} = 0$

$$\hat{I}_{B} = 0$$

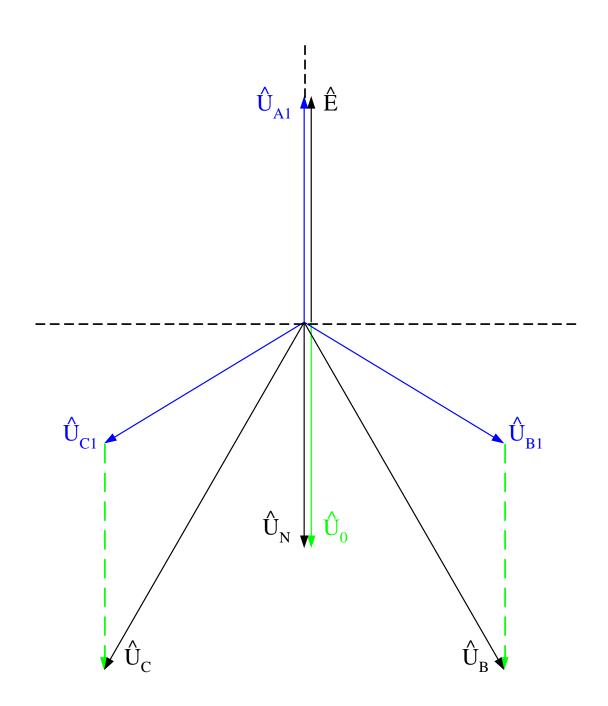
$$\hat{I}_{C} = 0$$

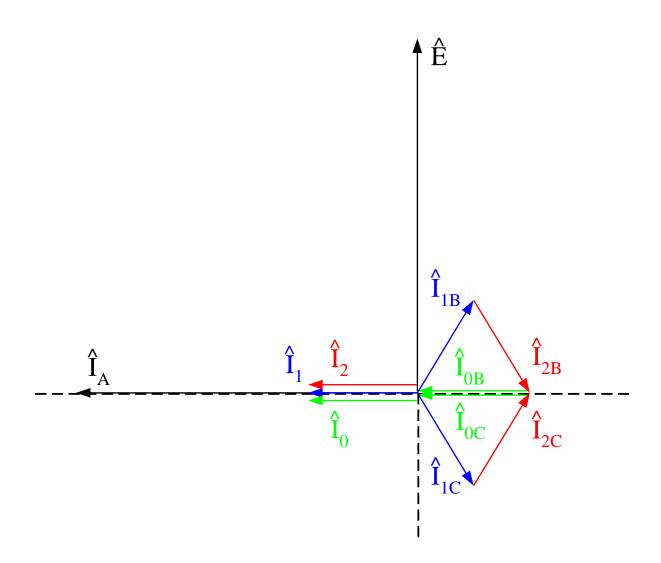
$$\hat{I}_{p} = -\hat{I}_{A} = -3j\frac{\hat{E}}{X_{C}}$$

$$\hat{I}_{p} = -3j\omega k_{0}\hat{E}$$

- phase voltage

$$\hat{\mathbf{U}}_{A} = 0$$


$$\hat{\mathbf{U}}_{B} = \hat{\mathbf{a}}^{2} \hat{\mathbf{U}}_{1} + \hat{\mathbf{a}} \hat{\mathbf{U}}_{2} + \hat{\mathbf{U}}_{0} = \hat{\mathbf{a}}^{2} \hat{\mathbf{E}} - \hat{\mathbf{E}} = (\hat{\mathbf{a}}^{2} - 1)\hat{\mathbf{E}}$$


$$\hat{\mathbf{U}}_{C} = \hat{\mathbf{a}} \hat{\mathbf{U}}_{1} + \hat{\mathbf{a}}^{2} \hat{\mathbf{U}}_{2} + \hat{\mathbf{U}}_{0} = \hat{\mathbf{a}} \hat{\mathbf{E}} - \hat{\mathbf{E}} = (\hat{\mathbf{a}} - 1)\hat{\mathbf{E}}$$

- neutral point voltage

$$\hat{\mathbf{U}}_{N} = \frac{1}{3} \left(\hat{\mathbf{U}}_{A} + \hat{\mathbf{U}}_{B} + \hat{\mathbf{U}}_{C} \right) = \frac{1}{3} \left(\hat{\mathbf{a}}^{2} - 1 + \hat{\mathbf{a}} - 1 \right) \hat{\mathbf{E}}$$

$$\hat{\mathbf{U}}_{\mathbf{N}} = -\hat{\mathbf{E}}$$

$$X_0 = (j3X_L)//(-jX_C) = j\frac{3X_LX_C}{X_C - 3X_L}$$

$$\hat{I}_{1} = \frac{\hat{E}}{j \frac{3X_{L}X_{C}}{X_{C} - 3X_{L}}} = -j \frac{X_{C} - 3X_{L}}{3X_{L}X_{C}} \hat{E}$$

$$\hat{I}_{p} = -\hat{I}_{A} = -3\hat{I}_{1} = j\frac{X_{C} - 3X_{L}}{3X_{L}X_{C}}\hat{E}$$

$$\hat{I}_p = 0$$

$$X_{c0} - 3X_{I} = 0$$

$$X_{L} = \frac{1}{3} X_{c0} = \frac{1}{3\omega k_{0}}$$