Electrical stations (substations)

By purpose

- transformer stations
- switching stations
- converter stations
- compensation stations

By position in ES

- power plants
- transmission system switching, transformer
- consumption industry, distribution
- converters transmission, consumption

Rated voltages

• LV:	110	230	400	500	660 V	
• MV:	3	6	10	22	35 kV	
• HV:	110	220	400	750 kV		

Basic elements of substation equipment

- 1) Busbars conductors carrying power to individual branches
- 2) Branches equipment for carrying power to grid lines

Instrument equipment in branches

- switch (circuit breaker CB)
- busbar disconnector
- outlet disconnector
- voltage and current transformers (VT, CT)
- measurement equipment, protections

Rated busbar currents

4	5	6,3	8	10	12,5	16	20	25	32
40	50	63	80	100	125	160	200		
400		630	800	1000	1250	1600	2000	2500	3150
4000	5000	6300	8000	10000	12500	16000	20000	A	

Recommended set of short-circuit endurance (ČSN 38 1754, ČSN 33 3015) Rated switching-off current I_{nvyp} (kA) – RMS value, its heat impacts must be survived by an electrical equipment for a given time (t = 2 s) without any damaging influencing its operation capability

6,3 8 12,5 16 20 25 31,5 40 50 63

Rated dynamic current I_{dyn} (kA) – peak short-circuit current, its dynamic impacts must be survived by an electrical equipment without any damaging influencing its operation capability

16 20 31,5 40 50 63 80 100 125 160 $I_{dyn} = 1,8 \cdot \sqrt{2} \cdot I_{nvyp}$

BUSBAR CONFIGURATIONS

DOUBLE BUSBAR SYSTEM

DOUBLE LONGITUDINAL DIVIDED BUSBAR SYSTEM

TRIPLE BUSBAR SYSTEM

Multiple busbar system and their dividing for higher reliability and flexibility.

Double system on MV level less often, in CR yes.

Combined switches – saving in switches number

COMBINED BUSBAR SWITCH

ECONOMICAL CROSS SWITCHING

TRIPLE BUSBARS COMBINED SWITCH

Auxiliary busbar

- possibility to operate a branch also during its CB failure (inspection)

AUXILIARY BUSBAR COMBINED SWITCH

MAIN BUSBAR AS AN AUXILIARY BUSBAR (+ BY-PASS)

NO BUSBAR CONFIGURATION - "H"

MORE SWITHCES FOR 1 BRANCH (higher reliability x costs)

INLET BRANCHES LV

FUSE AGAINST SHORT-CIRCUIT
CIRCUIT BREAKER AGAINST OVERLOADING
(SMALL S.-C. POWER)

OUTLET BRANCHES LV

MAIN BRANCHES MV DISC. **FUSE MV FUSE PROTECTION** DISC. DISC. PROTECTION AT THE INLET BEGINNING IS ASSUMED **SURGE ARRESTER** SURGE **ARRESTER**

SECONDARY BRANCHES MV

SECONDARY BRANCHES MV - MEASUREMENT

BOTH BUSBARS MEASUREMENT

Branches from HV substations

Main

- generator
- transformer
- outlet for overhead line
- outlet for cable line

Secondary

- main busbars switch
- auxiliary busbars switch
- voltage measurement
- spare

GENERATOR BRANCHES

TRANSFORMATOR BRANCHES

OVERHEAD LINE BRANCHES

CABLE LINE BRANCHE

SUBSTATION SELF-CONSUMPTION SUPPLYING

Electrical stations realization

- 1) Outside
- 2) Inside
 - a) cells
 - b) cabinets
 - c) halls
 - d) gas-insulated (GIS)

Cells

KOBKA PŘÍVODU

Cabinets

10 kV

Sliding CB

22 kV

Cell substations

- + highly clear arrangement
- + high operational reliability
- + high transmitted power
- + high short-circuit endurance
- high construction difficulty, costs

Cabinet substations

- + unification, variability
- + possibility of sliding CB (accessibility)
- + low construction costs
- + low space requirements
- lower reliability
- lower short-circuit endurance
- more difficult construction of double busbars

Gas insulated (GIS) – SF6

Chotějovice 400 kV

Transformer stations

- placement
 - outside ground, tower
 - inside cell

-position in ES

- production MV/HV block station
- transmission HV/HV connecting
- consumption HV/MV, MV/LV industry, public
- insulating -1/1

insulation

- dry
- oil with reservoir

DC supply

- 1) protection relays
- 2) CB control circuits
- 3) signal lights and relays
- 4) hf equipment
- 5) emergency el. drives
- 6) emergency and spare lights

Voltage levels

24 48

60

110

 $220 V_{DC}$

DC SWITCHGEAR

