Example 1:

The wave comes from a cable with wave impedance Z_{v1} = 40 Ω through an overhead line with wave

Fig. 1-1

impedance $Z_{v2} = 400 \Omega$ to a transformer with wave impedance $Z_{v3} = 4000 \Omega$. The voltage wave has sharp edge with voltage U = 100 kV. Configuration is shown in figure 1-1. Calculate the penetration voltage wave in transformer.

Solution:

The penetration voltage wave from the first boundary "1" to the second environment:

$$u_{p2} = \frac{2 \cdot Z_{v2}}{Z_{v1} + Z_{v2}} \cdot u_{p1} = \frac{2 \cdot 400}{40 + 400} \cdot 100 = 182 \, kV$$

The penetration voltage wave from the second boundary "1" to the third environment:

$$u_{p3} = \frac{2 \cdot Z_{v3}}{Z_{v2} + Z_{v3}} \cdot u_{p2} = \frac{2 \cdot 4000}{400 + 4000} \cdot 182 = 330 \, kV$$

The voltage conditions are shown in Fig. 1-2. (Different wave propagation speeds in different environments are not respected.)

Fig. 1-2

Example 2:

Calculate the impact of surge arrester with resistance R on the progressive wave for the configuration in Fig. 2-1.

Fig. 2-1

Solution:

We neglect the fact that surge arrester will act with a small delay. For simplicity it is assumed a permanent connection of the resistance to the boundary.

The penetration voltage wave to the second boundary:

$$u_{p2} = \frac{2}{Z_{v1} \cdot (\frac{1}{Z_{v1}} + \frac{1}{Z_{v2}} + \frac{1}{R})} \cdot u_{p1} = \frac{2}{400 \cdot (\frac{1}{400} + \frac{1}{5000} + \frac{1}{370})} \cdot U = 0.925 \cdot U$$

If there is no resistance connected (R $\rightarrow \infty$), the penetration voltage wave to the second boundary is:

$$u_{p2}^* = \frac{2 \cdot Z_{v2}}{Z_{v1} + Z_{v2}} \cdot u_{p1} = \frac{2 \cdot 5000}{400 + 5000} \cdot U = 1,85 \cdot U$$

Then the ratio $\frac{u_{p2}}{u_{p2}^*}=\frac{0.925}{1.85}=0$,5 determines the positive influence of connected resistance on the penetration voltage wave: $u_{p2}=0.5\cdot u_{p2}^*$

Example 3:

The overhead line is connected to the transformer through a capacitor bushing with capacity

 $C=0.01~\mu F$. Find out the capacity efficient time impact on the voltage wave with a sharp edge and voltage U = 200 kV. The length of the wave is 2 km (Fig. 3-1). Calculate the maximal value of the wave penetrated to the transformer.

Solution:

The circuit time constant:

$$T_c = \frac{C \cdot Z_{v1} \cdot Z_{v2}}{Z_{v1} + Z_{v2}} = \frac{0.01 \cdot 10^{-6} \cdot 400 \cdot 4000}{400 + 4000} = 3.64 \cdot 10^{-6} \, s = 3.64 \, \mu s$$

The capacity efficient time in the circuit:

$$t_c = 3 \cdot T_c = 3 \cdot 3,64 = 10,92 \,\mu s$$

The voltage wave duration time for its length 2 km:

$$t = \frac{l}{c} = \frac{2}{300\,000} = 6.7 \cdot 10^{-6} \, s = 6.7 \, \mu s$$

Based on calculation and Fig. 3_2, the capacitor has a longer effect in the circuit than the voltage wave duration. Therefore the maximal penetration wave size into transformer is set for the time $t = 6.7 \, \mu s$.

$$u_{p2max} = \frac{2 \cdot Z_{v2}}{Z_{v1} + Z_{v2}} \cdot U \cdot \left(1 - e^{-\frac{t}{T_c}}\right) = \frac{2 \cdot 4000}{400 + 4000} \cdot 200 \cdot \left(1 - e^{-\frac{6,67}{3,64}}\right) = 306 \ kV$$

Fig. 3-2

If there is no capacitor, the penetration wave in the transformer would be $u_{p2} = 364 \text{ kV}$ and the voltage wave would have moreover the sharp edge.

Example 4:

The overhead line is connected to the transformer through a capacitor bushing with capacity $C = 0,005 \,\mu\text{F}$. Find out the capacity efficient time impact on the voltage wave with a sharp edge and voltage $U = 200 \, kV$. The length of the wave is 2 km (Fig. 3-1). Calculate the maximal value of the wave penetrated to the transformer.

Solution:

The circuit time constant:

$$T_c = \frac{C \cdot Z_{v1} \cdot Z_{v2}}{Z_{v1} + Z_{v2}} = \frac{0,005 \cdot 10^{-6} \cdot 400 \cdot 4000}{400 + 4000} = 1,82 \cdot 10^{-6} \ s = 1,82 \ \mu s$$

The capacity efficient time in the circuit:

$$t_c = 3 \cdot T_c = 3 \cdot 1,82 = 5,46 \,\mu s$$

The voltage wave duration time for its length 2 km:

$$t = \frac{l}{c} = \frac{2}{300\,000} = 6.7 \cdot 10^{-6} \, s = 6.7 \, \mu s$$

We can see the voltage wave duration time is longer than the capacity efficient time in the circuit as shown in Fig. 4-1. Therefore the penetration wave size into transformer will be:

$$u_{p2max} = \frac{2 \cdot Z_{v2}}{Z_{v1} + Z_{v2}} \cdot U = \frac{2 \cdot 4000}{400 + 4000} \cdot 200 = 364 \, kV$$

Fig. 4-1

The penetration voltage wave has the same size as for the configuration without the capacity but it doesn't have the sharp edge due to the capacity.