1. Industrial plant consumed the active power $P=1280 \mathrm{~kW}$ with power factor $\cos \varphi=0,76$. Calculate consumed apparent power and power factor when is add the capacitor bank with the size $Q_{c}=550 \mathrm{kvar}$ (reactive power).

Fig. 1 - Phasor diagram (by compensation)

Calculation of apparent power:

$$
\begin{equation*}
S=\frac{P}{\cos \varphi}=\frac{1280}{0,76}=1684 \mathrm{kVA} . \tag{1.1}
\end{equation*}
$$

The power factor $\cos \varphi=0,76$ is equal to $\sin \varphi=0,65$
The reactive power:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{S} \cdot \sin \varphi=1684 \cdot 0,65 \doteq 1095 \mathrm{kVAr} \tag{1.2}
\end{equation*}
$$

Adding the capacitor bank (see fig. 1) is compensated a part of reactive power Q to the value:

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{k}}=\mathrm{Q}-\mathrm{Q}_{\mathrm{c}}=1095-550=545 \mathrm{kVAr} . \tag{1.3}
\end{equation*}
$$

Before compensation:

$$
\begin{equation*}
\operatorname{tg} \varphi=\frac{Q}{P}=\frac{1095}{1280} \doteq 0,86, \tag{1.4}
\end{equation*}
$$

The phase angle is $\varphi \doteq 40,7^{\circ}$.
After compensation:

$$
\begin{equation*}
\operatorname{tg} \varphi_{\mathrm{k}}=\frac{\mathrm{Q}_{\mathrm{k}}}{\mathrm{P}}=\frac{545}{1280} \doteq 0,43, \tag{1.5}
\end{equation*}
$$

This correspond with the phase angle $\varphi_{\mathrm{k}} \doteq 23^{\circ}$. The power factor after compensation will be $\cos \varphi_{k}=0,92$.
2. Industrial plant is supplied from transformer $22 / 0,4 \mathrm{kV}$ with nominal apparent power $S_{n}=800 \mathrm{kVA}$. Mean consumed active power is $P=460 \mathrm{~kW}$ with power factor $\cos \varphi=0,79$. Calculate the needed reactive power for compensation power factor to the value $\cos \varphi_{k}=0,95$ with the same consume of active power. Calculate the reserve of active power which can be used.

Fig. 2 - The proportion before and after compensation (while the same size of apparent power)

The power factor before compensation $\cos \varphi=0,79$ is equal to $\operatorname{tg} \varphi \doteq 0,78$. After compensation is power factor $\cos \varphi_{k}=0,95$ and this is equal to $\operatorname{tg} \varphi_{k}=0,33$.

Consumed reactive power before compensation:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{P} \cdot \operatorname{tg} \varphi=460 \cdot 0,78 \doteq 359 \mathrm{kVAr} . \tag{2.1}
\end{equation*}
$$

Reactive power after compensation:

$$
\begin{equation*}
Q_{k}=P \cdot \operatorname{tg} \varphi_{k}=460 \cdot 0,33 \doteq 152 \mathrm{kVAr} . \tag{2.2}
\end{equation*}
$$

Reactive power of capacitor bank:

$$
\begin{equation*}
Q_{c}=Q-Q_{k}=359-152=207 \mathrm{kVAr} . \tag{2.3}
\end{equation*}
$$

Before compensation is the reserve active power $P_{r e z}$:

$$
\begin{equation*}
S_{n}=\sqrt{\left(P+P_{r e z}\right)^{2}+Q^{2}}, \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
P_{\mathrm{rez}}=\sqrt{S_{\mathrm{n}}^{2}-\mathrm{Q}^{2}}-\mathrm{P}=\sqrt{800^{2}-359^{2}}-460 \doteq 255 \mathrm{~kW} . \tag{2.5}
\end{equation*}
$$

After compensation is the reserve active power $P_{r e z}$ (is higher):

$$
\begin{equation*}
P_{\mathrm{krez}}=\sqrt{\mathrm{S}_{\mathrm{n}}^{2}-\mathrm{Q}_{\mathrm{k}}^{2}}-\mathrm{P}=\sqrt{800^{2}-152^{2}}-460 \doteq 325 \mathrm{~kW} . \tag{2.6}
\end{equation*}
$$

3. The asynchronous motor 1600 kW is working in discontinuous operation. Three minutes is working with nominal power with current 350 A , two minutes in no-load mode with active power 100 kW and current 150 A . The nominal voltage is $U_{n}=3 \mathrm{kV}$.

Calculate the capacitor bank when the power factor must be by nominal power $\cos \varphi_{k}=0,96$. Calculate the power factor in no-load mode.

The nominal apparent power of motor:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}}=\sqrt{3} \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{\mathrm{n}}=\sqrt{3} \cdot 3 \cdot 10^{3} \cdot 350 \doteq 1,82 \mathrm{MVA} . \tag{3.1}
\end{equation*}
$$

The power factor without compensation:

$$
\begin{equation*}
\cos \varphi=\frac{P_{n}}{S_{n}}=\frac{1600 \cdot 10^{3}}{1,82 \cdot 10^{6}}=0,879 . \tag{3.2}
\end{equation*}
$$

The apparent power in no-load mode:

$$
\begin{equation*}
\mathrm{S}_{0}=\sqrt{3} \cdot \mathrm{U}_{\mathrm{n}} \cdot \mathrm{I}_{0}=\sqrt{3} \cdot 3 \cdot 10^{3} \cdot 150 \doteq 779 \mathrm{kVA} \tag{3.3}
\end{equation*}
$$

And there power factor

$$
\begin{equation*}
\cos \varphi_{0}=\frac{P_{0}}{S_{0}}=\frac{100}{779}=0,128 . \tag{3.4}
\end{equation*}
$$

The reactive power is solved (without compensation):

$$
\begin{equation*}
\mathrm{Q}=\mathrm{P} \cdot \operatorname{tg} \varphi=1600 \cdot 10^{3} \cdot 0,543 \doteq 869 \mathrm{kVAr} . \tag{3.5}
\end{equation*}
$$

The reactive power when power factor is $\cos \varphi_{k}=0,96$:

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{k}}=\mathrm{P} \cdot \operatorname{tg} \varphi_{\mathrm{k}}=1600 \cdot 10^{3} \cdot 0,292 \doteq 467 \mathrm{kVAr} . \tag{3.6}
\end{equation*}
$$

The power of capacitor bank (for assigned power factor $\cos \varphi_{k}=0,96$)

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{c}}=\mathrm{Q}-\mathrm{Q}_{\mathrm{k}}=869-467=402 \mathrm{kVAr} . \tag{3.7}
\end{equation*}
$$

The reactive power in no-load mode before compensation:

$$
\begin{equation*}
\mathrm{Q}_{0}=\mathrm{P}_{0} \cdot \operatorname{tg} \varphi_{0}=100 \cdot 10^{3} \cdot 7,75 \doteq 775 \mathrm{kVAr} \tag{3.8}
\end{equation*}
$$

Capacitor banks after compensation contribute 402 kVAr of the reactive power. The consumed reactive power from power grid in no-load mode after compensation will be:

$$
\begin{equation*}
\mathrm{Q}_{0 \mathrm{k}}=\mathrm{Q}_{0}-\mathrm{Q}_{\mathrm{c}}=775-402=373 \mathrm{kVAr} . \tag{3.9}
\end{equation*}
$$

This value is equal to power factor after compensation in no-load mode with this equation:

$$
\begin{equation*}
Q_{0 k}=P_{0} \cdot \operatorname{tg} \varphi_{0 k}, \tag{3.10}
\end{equation*}
$$

And there:

$$
\begin{equation*}
\operatorname{tg} \varphi_{0 k}=\frac{Q_{0 k}}{P_{0}}=\frac{373}{100}=3,73 . \tag{3.11}
\end{equation*}
$$

Power factor in no-load mode: $\cos \varphi_{0 \mathrm{k}} \doteq 0,26$.
The capacitor banks is constructed from three condenser connected to the triangle (delta). Each condenser contribute reactive power in amount:

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{cl}}=\frac{\mathrm{Q}_{\mathrm{c}}}{3}=134 \mathrm{kVAr} \tag{3.12}
\end{equation*}
$$

Capacity of each condenser:

$$
\begin{equation*}
\mathrm{C}_{1}=\frac{\mathrm{Q}_{\mathrm{cl}}}{\omega \cdot \mathrm{U}^{2}}=\frac{134 \cdot 10^{3}}{100 \cdot \pi \cdot 3000^{2}} \doteq 47,4 \mu \mathrm{~F} \tag{3.13}
\end{equation*}
$$

