L. Vandenberghe ECE133A (Fall 2018)

15. Problem condition

e condition of a mathematical problem
e matrix norm

e condition number

15.1



Sources of error in numerical computation

Example: evaluate a function f : R — R at a given x

sources of error in the result:

e Xx is not exactly known

— measurement errors
— errors in previous computations

— how sensitive is f(x) to errors in x?
e the algorithm for computing f(x) is not exact

— discretization (e.g., algorithm uses a table to look up function values)
— truncation (e.g., function is evaluated by truncating a Taylor series)
— rounding error during the computation

— how large is the error introduced by the algorithm?
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Condition (conditioning) of a problem

describes sensitivity of the solution to changes in the problem data

e well-conditioned problem:

small changes in the data produce small changes in the solution

¢ ill-conditioned (badly conditioned) problem:

small changes in the data can produce large changes in the solution

a rigorous definition depends on what “large error” means

e absolute or relative error, which norm is used, ...

e the informal definition is sufficient for our purposes
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Example: function evaluation

here the problem is: given x, evaluate y = f(x)

e if x is changed to x + Ax, solution changes to

y+ Ay = f(x + Ax)

e condition with respect to absolute error in x and y

Ayl ~ | f'(x)]|Ax]|

problem is ill-conditioned with respect to absolute error if | f/(x)| is very large

e condition with respect to relative errors in x and y

Ayl L7 COllx] [Ax]
[l fl x|

ill-conditioned with respect to relative error if | f/(x)||x|/| f(x)| is very large
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Roots of a polynomial

p(xX)=(x-1)(x=2)--(x—10)+65 - x°

roots of p computed by MATLAB for two values of ¢
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roots are very sensitive to errors in the coefficients
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Condition of a set of linear equations

e assume A is nonsingular and Ax = b

e if we change b to b + Ab, the new solution is x + Ax with

A(x+Ax)=b+ Ab

e the changein x is
Ax = A71AD

Condition

e the equations are well-conditioned if small Ab results in small Ax

e the equations are ill-conditioned if small Ab can result in large Ax

Problem condition
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Example of ill-conditioned equations

1-1010 1010
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e solutionforb=(1,1)isx =(1,1)
e change in x if we change b to b + Ab:

Ab; — 1019(Ab| — Aby)

_ 21 _
Ax=ATAb =1 4 1010, — Aby)

small Ab can lead to extremely large Ax
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Matrix norms

the Frobenius norm of an m X n matrix A is defined as

|AllF = JZZA

i=1 j=1

e denoted ||A[| in the textbook
e in MATLAB: norm(A, ’fro’); in Julia: norm(A)

the 2-norm or spectral norm is defined as

| Ax]]
[ x]]

IlA[|> max

e the norms ||Ax|| and ||x|| are Euclidean norms of vectors

e no simple explicit expression, except for special A

e readily computed numerically (in MATLAB: norm(A); in Julia: opnorm(A))
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Interpretation of 2-norm

the m X n matrix A defines a linear function f(x) = Ax

x—— Ay = f(x) = Ax

e ||Ax||/||x]|| gives the amplification factor or gain for input x
e the gain only depends on the direction of x

e the 2-norm of A is the maximum gain over all directions:

Ax
|A||, = max | Ax] = max ||Ax||
0 ||lx||  Jxll=1
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Computing the 2-norm of a matrix

Simple matrices: sometimes it is easy to maximize ||Ax||/||x||
e zero matrix: ||0]| = 0
e identity matrix: ||I]; =1

e diagonal matrix:

A 0 0
0 Ay - 0

A=| | 22 L b |All2 = max | Aii|
0 0 Ann

e maitrix with orthonormal columns: ||Al; =1

General matrices: ||A||; must be computed by numerical algorithms
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Properties of the matrix norm

Properties satisfied by all matrix norms

e nonnegative: ||All; > 0 for all A

e positive definiteness: ||All = 0 only if A =0
o homogeneity: ||BA|l> = |BlI|All2

e triangle inequality: ||A + B> < ||All> + ||Bl]2

Additional properties satisfied by the 2-norm

o ||[Ax|| < ||Al|2||x]|| if the product Ax exists

o ||AB||> < ||Al]2||B]|2 if the product AB exists

e if Ais nonsingular: |Al}>||[A7Y|, > 1

e if Ais nonsingular: 1/||A7Y ||, = min,.q (]|Ax|>/||x]])

o [AT]l2 = lIAll2
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Bound on absolute error

suppose A is nonsingular and define

x=Ab,  Ax=A"1Ab

Upper bound on ||Ax]||:

|Ax]| < [|A7 12 [1AB

e follows from property 4 on page 15.11
e small ||[A~!||, means that |Ax|| is small when ||Ab|| is small
e large ||A~!||, means that ||Ax|| can be large, even when ||Ab|| is small

e for every A, there exists nonzero Ab such that ||Ax]|| = ||[A7! |, ||AB]|
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Bound on relative error
suppose in addition that b # 0; hence x # 0

Upper bound on ||Ax|| /|| x]|:

1. llAB
< [|AlLlI A
|x]] 1]

o follows from [|Ax|| < [[A7!]lL]|AB]| and [|B]] < ||All2]|x]]
o ||A|LlIA™Y|> small means ||Ax||/||x|| is small when ||Ab]|/||5]| is small
o ||A||2||A‘1||2 large means ||Ax||/||x|| can be much larger than ||Ab||/|| ||

e for every A, there exist nonzero b, Ab such that equality holds in (1)

Problem condition 15.13



Condition number

Definition: the condition number of a nonsingular matrix A is

k(A) = ||All2lA72

Properties

e «(A) > 1forall A (last property on page page 15.11)

e A is a well-conditioned matrix if k(A) is small (close to 1):

the relative error in x is not much larger than the relative error in b

e A is badly conditioned or ill-conditioned if k(A) is large:

the relative error in x can be much larger than the relative error in b
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Example

e A is blurring matrix, nonsingular with condition number ~ 10°

e we apply A to image x

blurred image blurred and noisy image
y1 = Ax yp = Ax + small noise
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Example

we solve Ax = y for the two blurred images

e illustrates ill conditioning of A

e explains need for regularization in deblurring algorithms
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Exercises

Exercise 1

1
A =

= — l l ] A—lzl
2 a

l+a 1-a

a—1 1
a+1 -1

a is small and nonzero (a = 10710 on page 15.7); show that x(A) > 1/|4]

Exercise 2
suppose A = UBV with U, V orthogonal, and B nonsingular; show that

k(A) = k(B)

Exercise 3
suppose A = uv! where u and v are vectors; show that ||A|> = ||ull||v]|
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Exercises

Exercise 4 (ex. 15.3)

e |et u be a vector; show that

viu
|u|| = max —
v£0 ||v]|

e let A be a matrix; show that

T Ay
1Al = max =
y20,x20 |||

therefore ||All, = ||AT]|>
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