Sensitivity of Linear
Systems, Effects of
Roundoff Errors

When we solve a system of linear equations, we seldom solve exactly the system we
intended to solve; rather we solve one that approximates it. In a system Az = b,
the coefficients in A and b will typically be known from some measurements and
will therefore be subject to measurement error. For example, in the electrical circuit
problems introduced in Section 1.2, the entries of the coefficient matrices depend on
the values of the resistances, numbers that are known only approximately in practice.
Thus the A and b with which we work are slightly different from the true A and
b. Additional approximations must be made when the numbers are entered into a
computer; the real or complex entries of A and b must be approximated by numbers
from the computer’s finite set of floating point numbers. (However, this error is
usually much smaller than the measurement error.)

Because errors are inevitable, it is important to ask what effect small perturbations
in the coefficients have on the solution of a system. When we change the system
slightly, does this cause only a slight change in the solution or an enormous, unac-
ceptable change? As we shall see, not all systems are alike in this regard; some are
much more sensitive than others. The most important task of this chapter is to study
the sensitivity of linear systems.

A second question is one that was already mentioned in Chapter 1. If we solve
a system by Gaussian elimination on a computer, the result will be contaminated by
the roundoff errors made during the computation. How do these errors affect the
accuracy of the computed solution? We shall see that this question is closely related
to the sensitivity issue.

The most comprehensive work on this subject is N. J. Higham’s book, Accuracy
and Stability of Numerical Algorithms [41].

Fundamentals of Matrix Computations, Second Edition. By David S. Watkins 111
Copyright 0 2002 John Wiley & Sons, Inc. ISBN: 0-471-21394-2

112 SENSITIVITY OF LINEAR SYSTEMS

2.1 VECTOR AND MATRIX NORMS

In order to study the effects of perturbations in vectors (such as b) and matrices (such
as A), we need to be able to measure them. For this purpose we introduce vector and
matrix norms.

Vector Norms

The vectors used in this book are generally n-tuples of real (or complex) numbers.
Recall that the set of all real n-tuples is denoted R™. It is useful to visualize the
members of R? as points in a plane or as geometric vectors (arrows) in a plane with
their tails at the origin. Likewise the elements of R® can be viewed as points or
vectors in space. Any two elements of R™ can be added in the obvious manner to
yield an element of R™, and any element of R™ can be multiplied by any real number
(scalar) to yield an element of R™. The vector whose components are all zero will be
denoted 0. Thus the symbol 0 can stand for either a number or a vector. The careful
reader will not be confused by this.

The set of all n-tuples of complex numbers is denoted C™. In this chapter, as in
Chapter 1, we will restrict our attention to real numbers. However, everything that
we do here can be carried over to complex numbers.

A norm (or vector norm) on R™ is a function that assigns to each z € R" a
non-negative real number || z ||, called the norm of z, such that the following three
properties are satisfied forallz, y € R" and all o € R:

z||>0ifxz#0, and [|0]|=0 (positive definite property) (2.1.1)
Naz| = |alliz]| (absolute homogeneity) (2.1.2)
Nz +y|l <zl + vl (triangle inequality) (2.1.3)

Exercise 2.1.4
(a) Inthe equation ||0|] = 0, what it the nature of each zero (number or vector)?

(b) Show that the equation [|0| = 0 actually follows from (2.1.2). Thus it need
not have been stated explicitly in (2.1.1).

O

Any norm can be used to measure the lengths or magnitudes (in a generalized
sense) of vectors in R™. In other words, we think of ||z || as the (generalized) length
of z. The (generalized) distance between two vectors z and y is ||z — y||.

Example 2.1.5 The Euclidean norm is defined by

n 1/2
lzll, = (Zmﬁ) :

i=1

VECTOR AND MATRIX NORMS 113

You can easily verify that this function satisfies (2.1.1) and (2.1.2). The triangle
inequality (2.1.3) is not so easy. It follows from the Cauchy-Schwarz inequality,
which we will prove shortly (Theorem 2.1.6). The Euclidean distance between two
vectors x and y is given by

|| _ynz =

In the cases n = 1, 2, and 3, this measure coincides with our usual notion of distance
between points in a line, in a plane, or in space, respectively.
Notice that the absolute value signs in the formula for ||z]|, are redundant, as

|:v1| z? for any real number z;. However, for complex numbers it is not
generally true that | z;] = zZ, and the absolute value signs would be needed. Thus
the inclusion of the absolute value signs gives a formula for || z ||, that is correct for
both real and complex vectors. a

Theorem 2.1.6 {Cauchy-Schwarz inequality) Forall z, y € R"

n 1/2 ; o 1/2
TR
=1 i=1

Proof. For every real number ¢t we have

n n n
fo + 2t2$iyi + tzzy?
=1 i=1 =1

= ¢+ bt+at?

iYi

0< Y (s +ty:)°
i=1

wherea = > 0 y2,b=2%"" | z;y;,andc = 3 i, z7. Sinceat® + bt +¢ > 0 for

all real ¢, the quadratic polynomial at? + bt + ¢ cannot have two distinct real zeros.

Therefore the discriminant satisfies 2 — 4ac < 0. Rewriting this inequality as
(6/2)* < ac

and taking square roots, we obtain the desired result. O

Now we are ready to prove that the triangle inequality holds for the Euclidean
norm. Thus the Euclidean norm is indeed a norm.

Theorem 2.1.7 Forallz, y € R”, ||z + y|l, < lz]l, + |y]|,

Proof. It suffices to show that ||z + y |2 < [|z]12 + ||y l3-

"
H$+y|l§=z$z+y1 ZW +2Z$zyz+zyz
=1

114 SENSITIVITY OF LINEAR SYSTEMS

Applying the Cauchy-Schwarz inequality to the middle term on the right-hand side,
we find that

n

n n 1/2 n 1/2
Zm3+2(zxf> (Zf) +> y?
=1 =1 i=1 =1

n 1/2 n 17272
B (5
=1 =1

(=il + 1y i)

iz +yll*

IA

a

Example 2.1.8 Generalizing Example 2.1.5, we introduce the p-norms. For any real

number p > 1, we define
n 1/p
lz|l, = (leilp) -
i=1

Again it is easy to verify (2.1.1) and (2.1.2), but not (2.1.3). This is the Minkowski
Inequality, which we will not prove because we are not going to use it. a

The most important p-norm is the 2-norm, which is just the Euclidean norm.

Example 2.1.9 Another important p-norm is the 1-norm

n

[E2 R SREA]

i=1

In this case (2.1.3) is not hard to prove; it follows directly from the triangle inequality
for real numbers. |

Exercise 2.1.10 Prove that the 1-norm is a norm. O

Exercise 2.1.11 Let z, y € R%. With respect to the 1-norm, the “distance” between z and y
is||z —y|l; = |z1 — 1|+ |®2 — y2|. Explain why the 1-norm is sometimes called
the taxicab norm (or Manhattan metric). a

Example 2.1.12 The oo-norm is defined by
2l = max |
O

Exercise 2.1.13 Prove that the co-norm is a norm. a

Exercise 2.1.14 Given any norm on R?, the unit circle with respect to that norm is the
set {z € R? | ||z|| = 1}. Thinking of the members of R? as points in the plane,

VECTOR AND MATRIX NORMS 115

the unit circle is just the set of points whose distance from the originis 1. On a
single set of coordinate axes, sketch the unit circle with respect to the p-norm for
p=1,3/2, 2,3, 10, and co. a

The analytically inclined reader might like to prove that for all z € R, || z|| , =
lim ||z ||,

p—r00

Example 2.1.15 Given a positive definite matrix A € R™*", define the A-norm on

R" by
], = (a7 Az)'/2.
In Exercise 2.1.17 you will show that this is indeed a norm. O
Exercise 2.1.16 Show that when A = I, the A-norm is just the Euclidean norm. O

Exercise 2.1.17

(a) Let A be a positive definite matrix, and let R be its Cholesky factor, so that
A = RTR. Verify that forall z € R”, ||z ||, = || Rz |,

(b) Using the fact that the 2-norm is indeed a norm on R"™, prove that the A-norm
is a norm on R™.

]

Matrix Norms

The set of real m x n matrices is denoted R™*"™, Like vectors, the matrices in
R™*™ can be added and multiplied by scalars in the obvious manner. In fact the
matrices in R™*™ can be viewed simply as vectors in R™" with the components
arranged differently. In the case m = n, the theory becomes richer. Unlike ordinary
vectors, two matrices in R™*™ can be multiplied together (using the usual matrix
multiplication) to yield a product in R™*™. A matrix norm is a function that assigns
toeach A € R™*™ areal number || A ||, called the norm of A, such that the three vector
norm properties hold, as well as one additional property, submultiplicativity, which
relates the norm function to the operation of matrix multiplication. Specifically, for
allA, Be R™*™andalla € R,

1Al > 0ifA#0 (2.1.18)
ladll = [alllAll (2.1.19)
lA+B|l < [[Al+IBI (2.1.20)
JAB|I < [AllllB] (submultiplicativity) (2.1.21)

Example 2.1.22 The Frobenius norm is defined by
1/2

1Al = | DD layl’

i=1 j=1

116 SENSITIVITY OF LINEAR SYSTEMS

Because it is the same as the Euclidean norm on vectors, we already know that
it satisfies (2.1.18), (2.1.19), and (2.1.20). The submultiplicativity (2.1.21) can be
deduced from the Cauchy-Schwarz inequality as follows. Let C = AB. Then
Cij = 2221 a,;kbkj. Thus

14BIz=l1C1 =" leiP=3

=1 j=1 i=1 j=1

2

n
> b

k=1

Applying the Cauchy-Schwarz inequality to the expression Y ,_, aixbi;j, we find

that
n n k13 n
2
|AB|lz < Z(|a?k|Z|bij|>
i=1 j=1 \k=1 k=1
n n n n
- (E5er) (S5
i=1 k=1 =1 k=1
2
= [AIZIBI%.
Thus the Frobenius norm is a matrix norm. |

Exercise 2.1.23 Define || A|| = maxi<; j<n |ai;|. Clearly this function satisfies (2.1.18),
(2.1.19), and (2.1.20). Show by example that it violates (2.1.21) and is therefore not
a matrix norm. O

Every vector norm on R" can be used to define a matrix norm on R™*" in a natural
way. Given a vector norm || -||,,, the matrix norm induced by || - ||, is defined by

| Az ||
A = max ——2.
” ”M :c;éO ”:E”v

Theorem 2.1.26 will show that the induced norm is indeed a matrix norm. Another
name for the induced norm is the operator norm.

The induced norm has geometric significance that can be understood by viewing
A as a linear operator that maps R™ into R™: Each x € R"™ is mapped by A to the
vector Az € R™. Theratio || Az||,/||z||, is the magnification that takes place when
x is transformed to Az. The number || A||,, is then the maximum magnification that
A can cause.

It is a common practice not to use distinguishing suffixes v and M. One simply
uses the same symbol for both the vector norm and the matrix norm and writes, for
example,

Al = max I Az ||
270 ||z |l
We will adopt this practice. This need not lead to confusion, because the meaning of
the norm can always be deduced from the context.

VECTOR AND MATRIX NORMS 117

Before proving that the induced norm is indeed a matrix norm, it is useful to make
note of the following simple but important fact.

Theorem 2.1.24 A vector norm and its induced matrix norm satisfy the inequality
| Az|| < [All]|=]] (2.1.25)

forall A € R™™ and x € R™. This inequality is sharp in the following sense. For
all A € R™*™ there exists a nonzero x € R™ for which equality holds.

Proof. If z = 0, equality holds trivially. Otherwise

lzl _ [148]| _
z|l — #z0 lZ]

1Al

Thus || Az |} < || A]|||lz||. Equality holds if and only if z is a vector for which the
maximum magnification is attained. (That such a vector exists is actually not obvious.
It follows from a compactness argument that works because R™ is a finite-dimensional
space. We omit the argument.) O

The fact that equality is attained in (2.1.25) is actually less important than the
(obvious) fact that there exist vectors for which equality is approached as closely as
one pleases.

Theorem 2.1.26 The induced norm is a matrix norm.

Proof. The proof is not particularly difficult. You are encouraged to provide one of
your own before reading on. Only the submultiplicativity property (2.1.21) depends
upon (2.1.25).

Each of the first three norm properties follows from the corresponding property
of the vector norm. To prove (2.1.18), we must show that || A[| > 0if A # 0. If
A # 0, there exists a (nonzero) vector £ € R™ for which AZ # 0. Since the vector
norm satisfies (2.1.1), we have || AZ|| > 0 and || £|| > 0. Thus

To prove (2.1.19), we note that for every z € R™ and every a € R, ||a(4z)|| =
|| || Az||. This is because the vector norm satisfies (2.1.2). (Remember: Az is a
vector, not a matrix.) Thus

lodll = maclledzl_ o ledo)l o lelllAz]
w20 z| a£0 ||z]| oo |z]
Az
= Jamax 220 _ o4

240 ||z ||

118 SENSITIVITY OF LINEAR SYSTEMS

Applying similar ideas we prove (2.1.20).

1A+ B] = maxlAtBel_ Jde+ B
=70 |zl ©#£0 Nzl
< MSm lAz) , 1Bz
zF#0 “-’5” T#0 ||g;” 220 ||.’l)||
= Al +1IB].

Finally we prove (2.1.21). Replacing z by Bz in (2.1.25), we have [|ABz{ <
[| A{l|| Bz || for any x. Applying (2.1.25) again, we have || Bz || < || B||||z]]. Thus

Il ABz || < | Al Bl |I=]l-

For nonzero z we can divide both sides by the positive number |}z || and conclude

that | ABz|
z
| AB|| = max ——— < [|A[|[| B]|.
a0 ||zl
O
Exercise 2.1.27
(a) Show thatfor any nonzero vector x and scalar e, || Acz) || /|| ez || = | Az ||/ ||z]l-

Thus rescaling a vector does not change the amount by which it is magnified
under multiplication by A. In geometric terms, the magnification undergone
by x depends only on its direction, not on its length.

(b) Prove that the induced matrix norm satisfies

Al = max || Az{].

Jlz|l=1
This alternative characterization is often useful.

d

Some of the most important matrix norms are induced by p-norms. For1 < p <
00, the norm induced by the p-norm is called the matrix p-norm:

|| Az|],
| All, = max ——.
zF#0 ||$||p

The matrix 2-norm is also known as the spectral norm. As we shall see in subsequent
chapters, this norm has great theoretical importance. Its drawback is that it is
expensive to compute; it is not the Frobenius norm.

Exercise 2.1.28

(a) Calculate |||z and || I||,, where [is the n x n identity matrix, and notice
that they are different.

VECTOR AND MATRIX NORMS 119

(b) Use the Cauchy-Schwarz inequality (Theorem 2.1.6) to show that for all A €
< [[Aflp-

O

Other important cases are p = 1 and p = oo. These norms can be computed
easily.

n
Theorem 2.1.29 (a) ||A|l, = jmax Z|a”| (b) | All, = &ﬁxnzlaij I
<idn

Thus || A||; is found by summing the absolute values of the entries in each column
of A and then taking the largest of these column sums. Therefore the matrix 1-norm
is sometimes called the column-sum norm. Similarly, the matrix co-norm is called
the row-sum norm.

Proof. We will prove part (a), leaving part (b) as an exercise. We first show that
n

| All, < max " |ay|. Forallz € R",
J
=1

n n n n n
fAzll, = Y 1Az =YD ez <D lag|]

i=1 i=1 (j=1 i=1 j=1
n n n n
S0 9 TSI of (4% o) Y
j=1i=1 j=1 =1
n n n
_ (mgleam) Iz =(m,§x21aik|)nx||l-
i=1 i=1 i=1

n
Therefore || Azl /||z|], < m’?x2|aik| for all z # 0. From this |{A]j, <

i=1

n
max (Z laik]) . To prove equality, we must simply find an & € R™ for which

A
Tall, — (;")

Suppose that the maximum is attained in the rnth column of A. Let £ be the vector with
a | in position m and zeros elsewhere. Then || £||, = 1, A% = [@1m @2m - Gnm]T,

and || AZ||, = 31, |@im |- Thus

14z]l, _ < -
[l = 2 loml = mex {2 lasl)
1 i=1 I i=1

120 SENSITIVITY OF LINEAR SYSTEMS

Exercise 2.1.30 Prove part (b) of Theorem 2.1.29. (The argument is generally similar to
that of the proof of part (a), but your special vector £ should be chosen to have
components +1, with the sign of each component chosen carefully.) O

Additional Exercises

Exercise 2.1.31 Show that forall z € R"
2l <llzlly < lzll; < Vallzlly < nllz]l,.

The two outer inequalities are fairly obvious. The inequality || z||, < ||z ||, becomes
obvious on squaring both sides. the inequality ||z||; < v/n||z||, is obtained by
applying the Cauchy-Schwarz inequality (Theorem 2.1.6) to the vectors x and y =
1,1, .-+, 1]%. O

Exercise 2.1.32 Make systematic use of the inequalities from Exercise 2.1.31 to prove that
forall A € R™"

1 All; < vnllAlly < nll Al

and
1Al < VrllAll, < nllAll,-

2.2 CONDITION NUMBERS

In this section we introduce and discuss the condition number of a matrix A. This is
a simple but useful measure of the sensitivity of the linear system Az = b.

Consider a linear system Az = b, where A is nonsingular and b is nonzero. There
is a unique solution x, which is nonzero. Now suppose we add a small vector b to
b and consider the perturbed system AZ = b + &b. This system also has a unique
solution Z, which is hoped to be not too far from z. Let §z denote the difference
between £ and z, so that # = z + dz. We would like to say that if 45 is small, then
dz is also small. A more precise statement would involve relative terms: when we
say that b is small, we really mean that it is small in comparison with b; when we
say dz is small, we really mean small compared with . In order to quantify the size
of vectors, we introduce a vector norm || - ||. The size of db relative to b is then given
by ||8b]|/1|b]], and the size of éz relative to is given by |[dz||/|| z||. We would like
to say that if || 8b]]/|| || is small, then || dz||/|| = || is also small.

The equations Az = b and A(z + §z) = b + b imply that Adx = &b, that is,
dz = A~16b. Whatever vector norm we have chosen, we will use the induced matrix
norm to measure matrices. The equation 62 = A~!8b and Theorem 2.1.24 imply
that

ozl < 1A=] [|db]]. 2.2.1)

CONDITION NUMBERS 121

Similarly the equation & = Az and Theorem 2.1.24 imply (||| < || 4| || =]}, or

equivalently
1
<Al 22.2)
=1 Il 18]
Multiplying inequality (2.2.1) by (2.2.2), we arrive at
l| 6z || [98]
<||A|||A7T (2.2.3)
Tz < AT P

which provides abound for || 6z ||/|| z || in terms of || 85| /|| b||. The factor || A || A~ ||
is called the condition number of A and denoted x(A) [72]. That is,

w(4) = | A[[J] A7
With this new notation, we rephrase (2.2.3) as the conclusion of a theorem.

Theorem 2.2.4 Let A be nonsingular, and let x and & = x + dx be the solutions of
Az = band A% = b + b, respectively. Then
&b
< n(A)l-]|—|—|—:|. (2.2.5)
Since (2.2.1) and (2.2.2) are sharp, (2.2.5) is also sharp; that is, there exist b and
b (and associated and) for which equality holds in (2.2.5).

Exercise 2.2.6
(a) Show that k(A4) = k(A71).
(b) Show that for any nonzero scalar ¢, k(cA) = k(A).
0

From (2.2.5) we see that if x(A) is not too large, then small values of ||8b{|/||b]|
imply small values of [|dz|[/||z|]. That is, the system is not overly sensitive to
perturbations in b. Thus if xK(A) is not too large, we say that A is well conditioned.
If, on the other hand, x(A) is large, a small value of ||§b||/|| b|| does not guarantee
that || 5z || /|l z || will be small. Since (2.2.5) is sharp, we know that in this case there
definitely are choices of b and §b for which the resulting || 8z ||/|| z|| is much larger
than the resulting || 6b|/]1b|]. In other words, the system is potentially very sensitive
to perturbations in b. Thus if x(A) is large, we say that A is ill conditioned.

Proposition 2.2.7 For any induced matrix norm, (a) || I || = 1 and (b) s(A) > 1.

Proof. Part (a) follows immediately from the definition of the induced matrix
norm. To prove part (b), we note that I = AA7!,s01 = ||I]| = |44} <
[ANIATH] = s(4)- O

Thus the best possible condition number is 1. Of course the condition number
depends on the choice of norm. While it is possible to concoct bizarre norms such

122 SENSITIVITY OF LINEAR SYSTEMS

that a given matrix has a large condition number with respect to one norm and a
small condition number with respect to another, we will use mainly the 1-, 2-, and
co-norms, which typically give roughly comparable values for the condition numbers
of matrices. We will use the notation

sp(A) = [|All,[| A7], forl<p < oo

So far we have said that a matrix that has a large condition number is ill conditioned,
but we have not said anything about where the cutoff line between well-conditioned
and ill-conditioned matrices lies. Of course there is no point in looking for a precise
boundary. Furthermore the (fuzzy) boundary depends upon a number of factors,
including the accuracy of the data being used, the precision of the floating point
numbers, and the amount of error we are willing to tolerate in our computed solution.
Suppose, for example, that the components of b are correct to about four decimal
places. We do not know the exact value of b; in the computation we actually use
b + &b, where || 6b]|/]|b]] ~ 10~%. If we solve the problem accurately, we get not z
but z + dz, where an upper bound for ||dz ||/|| z || is given by (2.2.5).

Now suppose k(A4) < 102. Then by (2.2.5) the worst that can happen is
|6z ||/||z || ~ 10~2. That is, the error in z is not bigger than about one hundredth
the size of z. In many problems, this much error in the solution is acceptable. By
contrast, if K(A) ~ 104, then (2.2.5) tells us that it can happen that || §z ||/||z || = 1;
that is, the error could be as big as the solution itself. In this case we would have
to say that the condition number is unacceptably high. Thus it appears that in this
problem the boundary between well-conditioned and ill-conditioned matrices lies
somewhere in the range 102 to 10%.

Sometimes the accuracy of the floating point arithmetic can be the deciding factor.
It may be that we know b with extreme accuracy, but if numbers are only stored to
about seven decimal places accuracy in the computer, then we will be forced to work
with b + b, where ||8b]|/||b]| = 10~7. Then if we have k(A) ~ 107, we cannot
be sure to get a reasonable answer, even if we solve the system very accurately. On
the other hand a condition number of 103, 10%, or even 10° may be small enough,
depending on how accurate we require the solution to be.

We are overdue for an example of an ill-conditioned matrix.

1000 999 . .
Example 2.2.8 Tet A = [999 998] . You can easily verify that
Al = —998 999
999 -1000 |~

Thus || Al = [|All; = 1999 = [|A7 ||, = [|A™"]l;, and
Koo(A) = k1 (A) = (1999)2 = 3.996 x 10°.

The process of computing k2 (A) is more involved; we are not yet ready to describe it.
However, on this small matrix, MATLAB can easily do the job. Using the command
cond(A) or cond(A,2), we find that k3 (A) &~ 3.992 x 108.

CONDITION NUMBERS 123

This matrix would be considered ill conditioned by most standards. We will
discuss it further in Example 2.2.15. 0

Example 2.2.9 The the most famous examples of ill conditioned matrices are the
Hilbert matrices, defined by h;; = 1/(i 4+ j — 1). If we let H,, denotethe n x n
Hilbert matrix, then

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6 |’
1/4 1/5 1/6 1/7

Hy =

for example. These matrices are symmetric, can be shown to be positive definite,
and are increasingly ill conditioned as n is increased. For example, according to
MATLAB, k2(Hy) =~ 1.6 x 10* and k2 (Hg) ~ 1.5 x 10%°. O

Exercise 2.2.10 In MATLAB youcantype A = hilb(7) togetthe 7 x 7 Hilbert matrix, for
example. Type help cond to find out how to use MATLAB’s condition number
function. Use it to calculate k1 (H,,), k2(Hp), and koo (Hy) forn = 3,6, 9, and 12.

]

Geometric Interpretation of the Condition Number

We begin by introducing some new terms. The maximum and minimum magnification

by A are defined by
l| Az ||
maxmag(A) = max
Mgl = B e
and |
minmag{A) = min ——.
a0 ||zl

Of course, maxmag(A) is nothing but the induced matrix norm || A ||.
Exercise 2.2.11 Prove that if A is a nonsingular matrix, then

1 1

— — - -1 =
maxmag(A) = minmag(A-1) and - maxmag(A™") minmag(A)

O

From this exercise it follows easily that k(A) is just the ratio of the maximum
magnification to the minimum magnification.

maxmag(A)

Proposition 2.2.12 k(4) = — o(A)
minma,

Jor all nonsingular A.

Exercise 2.2.13 Prove Proposition 2.2.12. |

124 SENSITIVITY OF LINEAR SYSTEMS

An ill-conditioned matrix is one for which the maximum magnification is much
larger than the minimum magnification.

If the matrix A is nonzero but singular, then there exists # 0 such that Az = 0.
Thus minmag(A) = 0, and it is reasonable to say that k(A) = co. That is, we view
singularity as the extreme case of ill conditioning. Reversing the viewpoint, we can
say that an ill-conditioned matrix is one that is “nearly” singular.

Since a matrix A is singular if and only if det{A) = 0, it is natural to expect
that the determinant is somehow connected to the condition number. This turns out
to be wrong. There is no useful relationship between the condition number and the
determinant. See Exercise 2.2.14. When it comes to assessing sensitivity of linear
systems, the condition number is useful and the determinant is not.

Exercise 2.2.14
(a) Let o be a positive number, and define
a 0
nelo 0]
Show that for any induced matrix norm we have || 4,] = o, ||AJ!]] =
1/a, and x(A,) = 1. Thus A, is well conditioned. On the other hand,

det(Aq) = a2, so we can make it as large or small as we please by choosing
« appropriately.

(b) More generally, given any nonsingular matrix A, discuss the condition number
and determinant of a4, where a is any positive real number.

O
Example 2.2.15 Let us take another look at the ill-conditioned matrices
_ [1000 999] 1 [—998 999
A=| 999 908 | M AT =1 999 1000
from Example 2.2.8. Notice that
(1 1999 |
A K] = [1997 | - (2.2.16)

If we use the co-norm to measure lengths, the magnification factor || Az || . /[z
is 1999, which equals || A|| . Thus [}]

A. Since the amount by which a vector is magnified depends only on its direction and

is a vector that is magnified maximally by

not on its length, we say that [1] is in a direction of maximum magnification by A.

1999

1997] lies in a direction of minimum magnification

Equivalently we can say that [

CONDITION NUMBERS 125
by A~!. Looking now at A~!, we note that
L[-11_] 1997
A [1] 7| -19909 |
The magnification factor || A~z /l|z||,, is 1999, which equals ||A™]|,, so

-1, . o . -)
{ 1 } is in a direction of maximum magnification by A~}. Equivalently

1997 -1
A[—1999] = [1] , (2.2.17)
1997 | . . — - e .
and _199g | isina direction of minimum magnification by A. We will use the

vectors in (2.2.16) and (2.2.17) to construct a spectacular example.
Suppose we wish to solve the system

1000 999 zy | | 1999
[999 998 } { Ty } a [1997] ’ (22.18)
. 1999 . .
that is, Ax = b, where b = [1997 } Then by (2.2.16) the unique solution is

-[1]

Now suppose that we solve instead the slightly perturbed system

1000 999 £, | _ | 1998.99
[999 998 } [&2] = [1997.01 } : (2:2.19)
N —.01 -1 L L
This is AZ = b+ b, where 6b = [o1 } =.01 [1],whlch is in a direction of
. . . 19.97

maximum magnification by A~'. By (2.2.17), Adx = b, where §z = ~19.99 |-
Therefore £ = = + dz = [_?ggg . Thus the nearly identical problems (2.2.18)
and (2.2.19) have very different solutions. o

It is important to recognize that this example was concocted in a special way. The
vector b was chosen to be in a direction of minimum magnification by A~!, so that the
resulting z is in a direction of maximum magnification by A, and equality is attained
in (2.2.2). The vector b was chosen in a direction of maximum magnification by
A~1, so that equality holds in (2.2.1). As a consequence, equality also holds in
(2.2.5). Had we not made such special choices of b and b, the result would have
been less spectacular.

In some applications, for example, numerical solution of partial differential equa-
tions, if the solution is known to be a smooth function, it can be shown that b must

126 SENSITIVITY OF LINEAR SYSTEMS

necessarily lie in a direction of large magnification by A~!. Under that restric-
tion it is impossible to create an example that is anywhere near as spectacular as
Example 2.2.15.

We have seen that if a system is ill conditioned, we can build examples where
{[6z|/1| || is much larger than || 6b]|/|| b]|. In fact it can also happen that || éz || /|| z ||
is much smaller than || §b|}/]| b||. Inequality (2.2.5) has a companion inequality

(2.2.20)

which can be obtained by interchanging the roles of x and dz with b and 8, respec-
tively, and which is also sharp.

Exercise 2.2.21 Prove Inequality (2.2.20). Under what conditions does equality hold in
(2.2.20)? |

Example 2.2.22 We use the same ill-conditioned matrix A as in the two recent
examples. By (2.2.17) the system

1000 999 | [21 | _ [-1
999 998 ||z | T | 1

has z = _}ggg as its unique solution. If we now perturb this solution by
0.01 . 1997.01 . .
dxr = 0.01 | obtainz + 0z = [—1998.99] , which hardly differs from z at

all. However, using (2.2.16),

18.99
Alz + 6z) = Ax + Adzx = [90.97] ,

which is nowhere near Az. O

Because of their great sensitivity it is generally futile, even meaningless, to try to
solve ill-conditioned systems in the presence of uncertainty in the data.

. 375 374
Exercise 2.2.23 Let A = [759 750]

(a) Calculate A~ and Koo (A).

(b) Find b, 6b, z, and dz such that Az = b, A(z + dz) = b+ b, || 0b]| /116l
is small, and || 6z ||, /|| z ||, is large.

(c) Find b, 6b, x, and 0z such that Az = b, A(z + dz) = b+ 6b, ||dz || /||z ||
is small, and {|0b|| . /1|b]|, is large.

]

CONDITION NUMBERS 127

11l Conditioning Caused by Poor Scaling

Some linear systems are ill conditioned simply because they are out of scale. Consider
the following example.

Example 2.2.24 Let € be a small positive number. The system
10 i | [1
0 € zo | | €

i] . You can easily check that if ¢ < 1, then then the

coefficient matrix is ill conditioned with respect to the usual norms. In fact k1 (A)
= Kk2(A) = Ko(A) = 1/e. This system is subject to everything we have said so
far about ill-conditioned systems. For example, one can find a small perturbation in

has the unique solution z = [

b that that causes a large perturbation in z: Just take b + éb = [216] , for which

100/ 1P|l = € to get z + 0z = [; , which is far from [}] Notice that

this perturbation of b is small with respect to ||b|| but not small compared to the
component that was perturbed.
If we multiply the second equation of our system by 1/¢, we get a new system

ERYIET RN

which is perfectly well conditioned. Thus the ill conditioning was just a consequence
of poor scaling. O

Theorem 2.2.25 Let A be any nonsingular matrix, and let a1, as, . . ., a, denote its
columns. Then for any i and j,

ll @ ll,

lasll,’

kp(A) > 1<p<o0.

Proof. Clearly a; = Ae;, where ¢; is the vector with a one in the ith position and
zeros elsewhere. Thus

| Aell, _ Il del,

A)= = lja;
maxmag() r;l;%()](”.’L'”p = Heillp ”asza
Az | Ae; ||
minmag(A) = min I 4z, < T llasll,,
=0 lzll, ~ llell, ?

and
_ maxmag(A) > lla:ll,

) = imag(4) = Tag,

128 SENSITIVITY OF LINEAR SYSTEMS

O

Theorem 2.2.25 implies that any matrix that has columns that differ by several
orders of magnitude is ill conditioned. The same can be said of rows, since A is ill
conditioned if and only if AT is. (You can easily verify that £, (A4) = &1 (AT). In
Section 4.2 (Corollary 4.2.2) we will see that k3(A) = @(AT).) Thus a necessary
condition for a matrix to be well conditioned is that all of its rows and columns be
of roughly the same magnitude. This condition is not sufficient, as the matrices in
Example 2.2.8 and Exercise 2.2.23 show.

If a system is ill conditioned because its rows or columns are badly out of scale, one
must refer back to the underlying physical problem in order to determine whether the
ill conditioning is inherent in the problem or simply a consequence of poor choices of
measurement units. The system in Example 2.2.24 was easy to handle only because
it really consists of two independent problems

[t]le]=[1] and [e][az]=[¢c],

each of which is well conditioned. In general a more careful analysis is required.
Although the rows and columns of any matrix can easily be rescaled so that all of the
rows and columns have about the same norm, there is no unique way of doing it, nor
is it guaranteed that the resulting matrix is well conditioned. Issues associated with
scaling will be discussed in Section 2.8, but no definite advice will be given. Any
decision about whether to rescale or not, and how to rescale, should be guided by the
underlying physical problem.

For a summary of some of the most important known results on scaling to (nearly)
minimize the condition number, see Higham [41]. A different kind of condition
number that is invariant under row scaling is introduced in Section 2.9.

Another Geometric View of Il Conditioning

We have already seen one geometric interpretation of ill conditioning. For those
matrices whose rows and columns are not badly out of scale, a second useful geometric
picture of ill conditioning can be developed. Recall that a matrix is singular if and
only if its columns are linearly dependent (Theorem 1.2.3). We will show that
the columns of an ill-conditioned matrix are “nearly” linearly dependent. This is
consistent with the idea that ill-conditioned matrices are “nearly” singular. Let A
be a nonsingular matrix whose rows and columns are not severely out of scale, and
supposed A has been normalized so that || A]] = 1. Thatis, if | A|] # 1, we multiply
A by the scalar 1/|| A|| to obtain a new matrix whose normis 1. We have already seen
that multiplying an entire matrix by a scalar does not change its condition number
(Exercise 2.2.6). This normalization procedure is not essential to our argument, but
it makes it simpler and clearer. Since || A|| = maxmag(A), we have

_ maxmag(A) 1
1< k(4) = minmag(A) ~ minmag(A)’

CONDITION NUMBERS 129

so minmag({A) < 1. This implies that there is a ¢ € R" such that || Ac]|/|jc]| < 1.
Since the ratio || Ac||/|| c|| depends only on the direction of ¢ and not on the length,
we can choose ¢ so that || ¢|| = 1, and consequently || Ac|| < 1. Letting a1, ag, .. .,
a,, denote the columns of of A, we have

n
Ac = E a;C;.
i=1

Thus we see that there is a linear combination of the columns of A that adds up to
something small (Ac). If there were a linear combination that added up exactly to
zero, the columns would be linearly dependent. Since A is nonsingular, this cannot
occur. Since there is a linear combination that adds up to something that is “almost”
zero, we say that the columns of A are “nearly” linearly dependent.

A singular matrix had not only linearly dependent columns but also linearly
dependent rows. This suggests that an ill-conditioned matrix should have rows that
are “nearly” linearly dependent. That this is indeed the case follows from the fact
that A is ill conditioned if and only if A7 is.

Example 2.2.26 The matrices from Example 2.2.8 and Exercise 2.2.23 have rows
and columns that are nearly linearly dependent. O

The geometric interpretation of ill conditioning is based on the idea that the rows
of an ill-conditioned matrix are nearly linearly dependent. Consider the case n = 2:

a1171 + 1272 = Iy
an11 + G921 = bz.

The solution set of each of these equations is a line in the (z;, ;) plane. The
solution of the system is the point at which the two lines intersect. The first line
is perpendicular to the (row) vector [a11 @12], and the second line is perpendicular
to [a21 age]. If A is ill conditioned, then these two vectors are nearly dependent;
that is, they point in nearly the same (or opposite) direction. Therefore the lines
determined by them are nearly parallel, as depicted in Figure 2.1. The point labelled
p is the solution of the system. A small perturbation in b; (for example) causes a
small parallel shift in the first line. The perturbed line is represented by the dashed
line in Figure 2.1. Since the two lines are nearly parallel, a small shift in one of
them causes a large shift in the solution from point p to point ¢. In contrast, in the
well-conditioned case, the rows are not nearly dependent, and the lines determined
by the two equations are not nearly parallel. A small perturbation in one or both of
the lines gives rise to a small perturbation in the solution.

Example 2.2.27 Consider the system

1000z; +99922 = b
999z, + 998z, b,

130 SENSITIVITY OF LINEAR SYSTEMS

X

Fig. 2.1 Perturbing an ill-conditioned system

CONDITION NUMBERS 131

for which the coefficient matrix is the same as in Example 2.2.8. the slopes of the
two lines are
1000 999

= -1. = -— = —1.001002.
1.001001 and mo 998 00100

1= T 599

They are so nearly parallel that they are virtually indistinguishable in the vicinity of
their intersection point. Therefore the intersection point is hard to find. O

The system depicted in Figure 2.1 is actually not very ill conditioned at all. It is
not possible to draw a good picture of a truly ill-conditioned system; the lines would
be so nearly parallel as to be indistinguishable.

It is also useful to visualize the case of three equations in three unknowns. The
solution set of each equation is a plane in three-dimensional space. The plane
determined by the ith equation is perpendicular to the row vector [a;1 ai2 a3]. Each
pair of planes intersects in a line, and the three planes together have a common
intersection point, which is the solution of the system.

In the ill-conditioned case, the rows of the matrix are nearly linearly dependent, so
one of the rows is nearly a linear combination of the other two rows. For the sake of
argument let us say that the third row of A is nearly a linear combination of the other
two rows. This means that the vector [a3; as2 ass] nearly lies in the plane spanned
by [a11 ai2 a13] and [az; a2z ag3]. Therefore the plane of solutions of the third
equation is nearly parallel to the line of intersection of the first and second planes. In
the vicinity of the solution this line appears nearly to lie in the third plane. Thus the
exact location of the solution is hard to distinguish, and a small perturbation of any
of the planes will cause a large perturbation in the solution.

A better description would treat all equations equally rather than distinguishing
the third equation. Such a description is harder to write, but the situation is not hard to
visualize. Think first of a singular system that has infinitely many solutions; picture
three planes that intersect in a line. Now perturb the picture slightly so that there is
only one intersection point, but the three lines determined by intersecting the planes
in pairs remain nearly parallel. This is the ill-conditioned case.

Estimating the Condition Number

The developments of this section have made clear the importance of the condition
number of a matrix. Obviously we would like to be able to compute, or at least
estimate, this quantity at will. In principle the condition number is not hard to
calculate; one simply finds A~ and then calculates || A]| [|A~1||. (Or, if one is
using MATLAB, one simply types cond (&) .) This is fine if A is not too large.
However, for really large A, we would prefer to save the considerable expense of
computing A~1. For our purposes we do not need to know the condition number
exactly; an order-of-magnitude estimate is good enough. What is needed is an
inexpensive estimate of x(A).

Let us suppose that we have already solved the system Az = b by Gaussian
elimination, and now we would like to estimate «(A4) in order to help us assess

132 SENSITIVITY OF LINEAR SYSTEMS

the quality of our computed solution. Suppose we choose to estimate x;(4) =
| All;I]A=*|l;. From Theorem 2.1.29 we know that it is easy to compute || A}, .
What is more challenging is to get an estimate of || A~ ||,. We begin by noting that
for any nonzerow € R™

-1 -1
47wl A7y,

< = [l A7 ;.
llwlly v£o |yl '
Thus, taking w = b, we have A~lw = z,
il LAl =]l
<A, and p(A4) > PEEEIL
ol ! 1B,
This gives an inexpensive lower bound for k1 (A). More generally, for any nonzero
w € R”,
All 1AL
[l

Since we already have an LU decomposition of A at hand, we can calculate A= w
by solving Ac = w at a cost of only some 2n? flops. If w is chosen in a direction of
near maximum magnification by A1, the estimate

-1
K1(A) ~ AT A wll, (2.2.28)
llwlly
will be quite good. Actually any w chosen at random is likely to have a significant
component in the direction of maximum magnification by A~! and therefore to give
a reasonable estimate in (2.2.28). Since a random w will occasionally give a severe
underestimate of x;{A), the cautious operator might like to try several different
choices of w.

More sophisticated approaches conduct systematic searches for a w that points
nearly in the direction of maximum magnification. The most successful method to
date has been the method of Hager, as modified by Higham (see [41]), which uses
ideas from convex optimization to search for a w that maximizes || A= w ||, /||w ||,
This method, which usually gives an excellent estimate, is the basis of the condition
number estimators in LAPACK [1] and MATLAB.

Exercise 2.2.29 Recall thatin MATLAB youcantype A = hilb(3) to getthe 3 x 3 Hilbert
matrix Hj, for example. Use MATLAB’s condition number estimator condest to
estimate ; (H,,) forn = 3, 6,9, and 12. Compare it with the true condition number,
as computed by cond (A, 1) . Note the excellent agreement. O

Exercise 2.2.30 Try MATLAB’s condition number estimator on a larger matrix. For example,
try
m 42; % Make m larger or smaller, as needed.
A delsqg{numgrid(’N’,m)); % sparse matrix
size(A) % of dimension (m-2)"2.

PERTURBING THE COEFFICIENT MATRIX 133

issparse (A)

B = full(a); % nonsparse version of A
issparse(B)

tic; cl = condest(d), toc

tic; c2 = cond(B,1), toc

Comment on the speed and accuracy of condest. Youmightalso liketotry tic;
c3 = cond(B,2), toc, which computes x2(B). However, you may find that
this takes too long unless you decrease the size of the problem by decreasing m.
This is a time consuming calculation, because it requires the singular values of B
(Section 4.2). O

MATLAB’s condest function has to compute the LU decomposition of the ma-
trix, since it cannot assume that an LU decomposition is available. Thus condest
is less efficient than it would be if the decomposition were assumed available. How-
ever, if the matrix under consideration is sparse, condest will do a sparse LU
decomposition (Section 1.9), thereby saving a lot of work. This explains the good
outcome in Exercise 2.2.30.

2.3 PERTURBING THE COEFFICIENT MATRIX

Up to this point we have considered only the effect of perturbing b in the system
Az = b. We must also consider perturbations of A4, as A is also known and
represented only approximately. Thus, let us compare two systems Az = b and
(A+0A)3 = b, where [[6A4]|/]| A]| is small. Our first task is to establish a condition
that guarantees that the system(A + §A)& = b has a unique solution, given that the
system Az = b does. This is given by the following theorem, which, along with
the subsequent theorems in this section, is valid for any vector norm and its induced
matrix norm and condition number.

Theorem 2.3.1 If A is nonsingular and
10A]

—

(2.3.2)

then A + 8 A is nonsingular.

Proof. The hypothesis ||dA||/|| A]| < 1/x(A) can be rewritten in various ways, for
example, |[6A4|| < 1/||A71]| and ||6A]] ||A71|| < 1. We’ll use this last form of
the inequality, and we’ll prove the contrapositive form of the theorem: If A 4 §A is
singular, then ||JA]| ||A7]| > L.

Suppose A + d A is singular. Then, by Theorem 1.2.3, there is a nonzero vector
y such that (A + 6 A)y = 0. Reorganizing this equation, we obtain y = —A~1J Ay,
which implies ||y|| = {| A716Ay|| < [|A7[| [[6A]| [ly]|. Since [|y]| > 0, we can
divide both sides of the inequality by ||y || to obtain 1 < || A~ LI 1A, which is the
desired result.

134 SENSITIVITY OF LINEAR SYSTEMS

Theorem 2.3.1 demonstrates another important function of the condition number;
it gives us an idea of the distance from A to the nearest nonsingular matrix: If A+5§A4
is singular, then || § A | /]| A || must be at least 1/« (A). It turns out that for the spectral
norm this result is exact: If A + § A is the singular matrix closest to A, in the sense
that || 6A||, is as small as possible, then |[6A ||, /|| A||, is exactly 1/x2(A). We will
prove this in Corollary 4.2.22.

As long as (2.3.2) is satisfied, we are assured that the equation (4 + §4)% = b has
a unique solution. Notice that (2.3.2) is hard to satisfy if A is ill conditioned; that is,
it is satisfied only for very small perturbations d A. If, on the other hand, A is well
conditioned, (2.3.2) holds even for relatively large perturbations.

Now let us consider the relationship between the solutions of Az = band (A +
JA)E = b. Let dx = & — x, so that £ = z + dz. Under what conditions can we
conclude that || dz|{/|| || is small? We would like an upper bound on || §z||/]|z ||
in the spirit of Theorem 2.2.4. We will obtain such a bound eventually, but it
turns out to be easier to bound ||dz||/||£]]- In most cases there will not be much
difference between ||z || and || Z ||, so it makes little difference which one we use in
the denominator.

Theorem 2.3.3 Let A be nonsingular, let b # 0, and let x and T = = + dx be
solutions of Az = band (A + 0A)Z = b, respectively. Then,

oz |l
|l
Proof. Rewriting the equation (A + 0A)Z = b as Az + Adz + §AZ = b, using

the equation Az = b, and reorganizing the resulting equation, we obtain dz =
—A716Az%. Thus

2]}
4]

< (A) (2.3.4)

6zl < TATH AN (I £]]- (2.3.5)

Dividing through by || Z|| and using the definition x(A) = || A|| || A~1||, we obtain
the desired result. a

Theorem 2.3.3 shows that once again the condition number of A plays the decisive
role. If k(A) is not too large, then a small perturbation in A results in a small
perturbation in z, in the sense that ||z ||/||]| is small.

It is interesting to note that Theorem 2.3.3 does not rely on nonsingularity of
A + 8 A, nor on any assumption to the effect that 6 A is small. In contrast, the next
theorem, which provides a bound on || éz]|/{| z ||, does make such an assumption.

Theorem 2.3.6 If A is nonsingular, ||6A||/||Al] < 1/6(A), b # 0, Az = b, and
(A +0A)(x + 0x) = b, then

0A
16z ”(A)Jlml
Tzl = [6A] @37
1—-k(A) Al

PERTURBING THE COEFFICIENT MATRIX 135

If A is well conditioned and || d A || /|| A|| is sufficiently small, then || A || /]| A|} €
1/k(A). In this case the denominator on the right side of (2.3.7) is approximately 1.
Then (2.3.7) states roughly that

[EEPNEXY

Izl <A an
which is almost the same as (2.3.4). This shows that if A is well conditioned and
fI6A N/t Al is small, then || dz|{/]| z|| is small.

If, on the other hand, A is ill conditioned, then (2.3.7) allows (but does not prove)

that || 6z /|| z|| could be large, even if || 6A||/|| A]| is small.
Proof. The proof of Theorem 2.3.6 is the same as that of Theorem 2.3.3, upto (2.3.5).
Rewriting £ as z + éx in (2.3.5) and using the triangle inequality, we find that

Il 6| NATHISAN (=l + |6z 1D)

oAl
SAT (=]l + Nl 62 1)) -

Now rewrite this inequality so thatall of the terms involving || §z || are on the left-hand

e (1 s LAY iy < i L241
- s el < sl

The assumption ||0A||/|| A]| < 1/k(A) guarantees that the factor that multiplies
|| 62]| is positive, so we can divide by it without reversing the inequality. If we also
divide through by || z ||, we obtain the desired result. a

IA

So far we have considered the effects of perturbing b and A separately. This was
done not out of necessity but from a desire to keep the analysis simple. The combined
effects of perturbations in A and b can be expressed in a single inequality, as the next
two theorems show. The first is in the spirit of Theorem 2.3.3, and the second is in
that of Theorem 2.3.6.

Theorem 2.3.8 Let A be nonsingular, and suppose = and % satisfy Az = b and
A& = b, respectively, where A = A+ 6A, i =z + 6z #0, and b = b+ b # 0.

Then
16| LAl I8el] . (1841 ebl
Bl S"“‘”(nAn TR ||a||>'

Of the terms on the right-hand side, the product term is usually ncgligible. For

I f—ﬂ——” I~ 10-5 d||6b|| 1073, then 5A gL
example, 1 A[| H ” en ” le

Theorem 2.3.9 If A is nonsingular, ||6A||/]| A|] < l//s(A), b#0 Ax = b and
(A+dA)(z + 0z) = b+ &b, then

; 4 llevl
bl _ o (1)

=T A

. (2.3.10)

136 SENSITIVITY OF LINEAR SYSTEMS

Example 2.3.11 In Example 1.2.6 we considered an electrical circuit that leads to
the linear system

2 -1 -1 0 1 0
-1 15 0 -5 | |0
-1 0 1.7 -2 z3 || 3 |°

0 -5 -2 17 T4 0

which we solved to determine the voltages at the nodes of the circuit. If we solve
the system using MATLAB or any other reliable software, we obtain an extremely
accurate solution (See Example 2.4.2 below). It is the accurate solution of the given
system, but what if the entries of A and b are incorrect? The entries of A depend
on the resistances in the circuit, and the one nonzero entry of b depends also on the
voltage of the battery. None of these quantities are known exactly. Theorem 2.3.9
gives us information about the effects of inaccuracies. Suppose, for example, the
resistances and the voltage are known to be in error by less than one one hundredth
of one percent. This means that the relative error is less than 10~4, so, roughly
speaking,

3A
1541l ~10"* and gt ~ 1074,

| All, el

Using MATLAB’s cond function, we get k2 (A) = 12.7. Substituting these values
into (2.3.10), we find that

|6 |l
=]l
Thus the computed nodal voltages are off by at most one quarter of one percent.
It should be noted that the actual error is likely to be much less than this. Results
obtained using an upper bound like the one in Theorem 2.3.9 tend to be quite
pessimistic. |

<25x1073.

Exercise 2.3.12 Prove Theorem 2.3.8. Do it your way, or use the following outline.

(a) Show that
bz = A7V (6b— §A%),

oz < TATHI(I6b]1 + [[BANI21D),

and

6z 1sAll . 1isb]
Iz ng(A)(HAM Al nazn)'

(b) Show that A
ol < (1Al +HsAm 2|,

and therefore
1 (fA[+1I6AlD)

Nzl — 5]

(c) Combine the results of (a) and (b) to finish the proof.

A POSTERIORI ERROR ANALYSIS USING THE RESIDUAL 137

O

Exercise 2.3.13 Prove Theorem 2.3.9 by combining elements of the proofs of Theorems 2.2.4
and 2.3.6. ()

Geometric pictures of two- and three-dimensional ill-conditioned systems such as
those we developed to visualize the effects of perturbations in b are also useful for
visualizing perturbations in A. Whereas perturbations in b cause parallel shifts of the
lines or planes, perturbations in A cause nonparallel shifts.

2.4 A POSTERIORI ERROR ANALYSIS USING THE RESIDUAL

So far we have been studying the sensitivity of the solution of Az = b to perturbations
in the data. Now we switch to a related question. If we solve the system Az = b
using Gaussian elimination or some other method, how do the roundoff (and other)
errors affect the accuracy of the computed solution? Before getting into the details
of floating-point arithmetic and roundoff error analysis, let us pause to make note of
a simple error test that uses the residual and the condition number.

Suppose we have computed a solution of the system Az = b by any method
whatsoever. Call this computed solution . Regardless of how we obtained z, we
can easily compute the residual ¢ = b — A%, which gives a measure of how well £
fits the equations. The fit is good if 7 is small (more precisely, if |[7{[/|[b[] is small);
7 = 0 if and only if Z is the true solution of Az = b.

A tiny residual is reassuring. It guarantees that Z is the solution of a system that
is close to Az = b: If we define §b = —7, then £ is the exact solution of the system
A% = b+ b, which is just a slight perturbation of the system Az = b. Unfortunately
this does not guarantee that Z is close to x; we have to take the condition number of
A into account. Writing £ = z + Jz, as in Section 2.2, we see that Theorem 2.2.4
gives us an upper bound on the relative error || 6z ||/||z||. Restating Theorem 2.2.4
as a statement about residuals, we have the following result.

Theorem 2.4.1 Let A be nonsingular, let b # 0, and let & be an approximation to the
solution of Ax = b. (In other words, let T be any vector whatsoever.) Let ¥ = b— AZ.
Then

e =2l _ Il
= <"

From this simple theorem we see that if the residual is tiny and A is well condi-
tioned, then £ is an extremely accurate approximation to z. The cost of calculating
7 is only about 2n? flops if A is full and even less if A is sparse. If we also have
an efficient means of calculating or estimating the condition number (as discussed
at the end of Section 2.2), then we may be able to use this theorem to guarantee the
accuracy of our computed solution.

Theorem 2.4.1 is an example of an a posteriori error bound. It is a bound we
obtain after we have solved the problem (i.e. computed £). In contrast, an a priori

138 SENSITIVITY OF LINEAR SYSTEMS

error analysis attempts to determine, before solving a problem, whether the method is
going to produce an accurate solution. A posteriori analyses are generally easier and
more informative than a priori analyses because they can make use of the computed
solution and any other information that was obtained in the course of the computation.
In Section 2.7 we will develop an a priori analysis of the accuracy of the solution of
a linear system by Gaussian elimination in the presence of roundoff errors.

Example 2.4.2 Consider the linear system

2 -1 -1 0 T
-1 15 0 =5 o
-1 0 17 -2 T3

0 -5 -2 17 T4

|
cwo o

from Example 1.2.6. The components of the solution z are the nodal voltages of the
circuit shown in that example. Entering the matrix A and vector b into MATLAB
and using the commands

format long
xhat = A\Db
we find that
3.06382978723404
2.42553191489362
3.70212765957447
1.14893617021277

8>
]

We write £ to indicate that this result is not exactly the true solution, since roundoff
errors occurred during the calculation. To check the accuracy of the result, we
perform the additional operations

rhat = b - A*xhat;

nr = norm{rhat)

ca = cond(a)

errbound = ca*nr/norm(b)

to find that ||# ||, = 1.05 x 10715, k»(A) = 12.7, and

lz—2ll, _ (Al
I T

This shows that our computed solution is very accurate. Roughly speaking, its entries
agree with the correct nodal voltages to at least fourteen decimal places.

This assumes, of course, that the data (A and b) are correct. However, since A is
well-conditioned, we know from results in Section 2.3 that slight errors in A and b
will perturb the solution only slightly. See Example 2.3.11. a

=4.45x 10715,

Exercise 2.4.3 Consider the system

ROUNDOFF ERRORS; BACKWARD STABILITY 139

from Example 1.2.8. The components of the solution are the loop currents in the
electrical circuit in that example. Use MATLAB to solve the system, compule the
residual and condition number, and show that the computed solution is extremely
accurate. a

Exercise 2.4.4 Rework Exercise 1.2.17. Compute the solution using MATLAB. Compute the
residual and condition number, and conclude that the computed solution is extremely
accurate. o

Exercise 2.4.5 If the matrix is large, we prefer to estimate the condition number instead of
trying to compute it exactly. Using MATLAB, solve a system Az = b, where A is a
large discrete Laplacian operator:

m = 42; % Make m larger or smaller, as needed.
A = delsg(numgrid('N’,m));

n = size(A,1)

b = ones(n,1); % '‘all ones’' right-hand side.
xhat = A\b;

ca = condest{A)

Compute the residual, and use condest and Theorem 2.4.1 to estimate the error.
Since condest estimates the 1-condition number x;(A), use l1-norms in your
estimate. 0

2.5 ROUNDOFF ERRORS; BACKWARD STABILITY

This section begins with a discussion of floating-point arithmetic and the effects of
roundoff errors. The accuracy of arithmetic operations in the presence of errors
is studied. It is found that a sudden loss of (relative) accuracy can occur when
a cancellation occurs in the addition or subtraction of two numbers. Because of
the threat of cancellation, it is impossible to analyze the errors in a complicated
algorithm like Gaussian elimination in a forward or direct way. Therefore a more
modest approach, backward error analysis, is introduced.

Floating-point Arithmetic

Most scientific computations are performed on computers using floating-point arith-
metic, which is the computer version of scientific notation. We will not define
the term but instead give some examples. The number .123456 x 107 is a six-
digit decimal floating-point number. It has a mantissa .123456 and an exponent
7. It is called a decimal number because the number base is 10 (and of course
the mantissa is interpreted as a base-10 fraction). Because the number has an
exponent, the decimal point can “float” rather than remaining in a fixed posi-
tion. For example, .123456 x 10° = 123.456, .123456 x 10® = 12345600., and
123456 x 1072 = .00123456. The advantage of the floating-point representation is
that it allows very large and very small numbers to be represented accurately. Other

140 SENSITIVITY OF LINEAR SYSTEMS

examples of floating-point numbers are .6542 x 10%C, a large four-digit decimal
number, and —.71236 x 10742, a small, five-digit decimal number. A floating-point
number is said to be rnormalized if the first digit of its mantissa is nonzero. Thus
the examples we have looked at so far are normalized, whereas .0987 x 10° and
—.0012346 x 10~* are not normalized. With few exceptions, nonzero floating-point
numbers are stored in normalized form.

Each mantissa and each exponent takes up space in the computer’s memory. In a
floating-point number system a fixed amount of space is allocated for each number,
so there are limitations to the precision with which numbers can be represented. For
example, if we are using a decimal (base-10) machine that stores four decimal digits,
we cannot represent the number .11112 x 105 exactly. We must approximate it by the
nearest floating-point number, which is .1111 x 10°. Also, each arithmetic operation
will be accompanied by a roundoff error. Suppose, for example, we multiply the
floating point number .1111 x 10* by .1111 x 102. Multiplying the mantissas and
adding the exponents, we obtain the exact result. .01234321 x 10%, which we
normalize to .1234321 x 102. The mantissa of this result has more digits than we can
store, sO we must approximate it by the nearest floating-point number .1234 x 102.
This is where the roundoff error occurs.

Since each number’s exponent must also be stored within some prescribed amount
of space, there is also a limit to the size of exponents that can be represented. Numbers
that are past a certain threshold cannot be represented in the floating-point system.
If a computation results in a number that is too big to be represented, an overflow is
said to have occurred. For example, if our system can represent numbers up to about
10%, an overflow will occur if we try to multiply, say, 10%% by 10%°. This undesired
event may cause the computer to stop execution of the program (depending on how
certain compiler flags have been set). If a number that is nonzero but too small to be
represented is computed, an underflow results. For example, if our number system
allows storage of numbers as small as about 10799, and underflow will occur if we
multiply 107 by 107%°. A common remedy for underflow is to set the result to
zero. This action is usually (but not always) harmless. With one or two exceptions
we will ignore the possibility of underflow or overflow.

All of our examples use base-10 arithmetic, because that is what we humans
are used to. Hand-held calculators aside, most computers do not use a base-10
representation; a power of two is more convenient architecturally. In the early days
of computing, each manufacturer made its own decisions about the characteristics
of its computers’ floating point arithmetic (e.g. number base, how many digits are
allocated to the mantissa and how many to to the exponent). Thus there were
many different floating point systems in use, some better than others. Since the
adoption of the IEEE floating-point standard (ANSIIEEE Standard 754-1985) in
1985, the situation has improved dramatically. Nowadays all of the inexpensive,
widely-available microprocessors conform to this standard.

Here we will outline some of the basic properties of IEEE arithmetic. For more
details see [15], {41], or [52]. The IEEE standard supports both single precision
and double precision floating-point numbers. In both cases the number base is two.
Single precision numbers are stored in 32-bit words, of which 24 bits are used for

ROUNDOFF ERRORS; BACKWARD STABILITY 141

the mantissa and the other 8 for the exponent. Since 224 ~ 107, 24 bits are enough
to store approximately seven decimal digits worth of information. In other words,
single precision numbers can be accurate to about seven decimal places. With eight
bits for the exponent it is possible to represent exponents from about —128 to +128.
Since these are exponents of the base 2 (not 10), the range of numbers that can be
represented is from about 27128 x5 10738 t0 2128 ~ 1038, (These are very coarse
approximations.)

Double precision IEEE floating-point numbers are allocated 64 bits, of which 53
are used for the mantissa and 11 for the exponent. Since 253 a 1016, double precision
numbers can be accurate to about 16 decimal places. Eleven bits of exponent allow
the representation of numbers from about 271024 x 107308 to 21024 ~ 10302, an
extremely wide range.

The IEEE floating-point standard also includes useful features for automatic han-
dling of exceptional events such as overflow, underflow, and division by zero. See
[15]1, [41], or [52].

Computing in the Presence of Errors

Our task is to assess the cumulative effects of roundoff errors on our calculations. To
this end we introduce the notation fi(C) to denote the floating-point result of some
computation C. For example, if we multiply by y, the result calculated by the
computer will be denoted fl(zy). We can apply this notation to more complicated
expressions as well, as long as the order in which the computations are to be performed
is clear. For example, i(3")._ | z;y;) is a perfectly acceptable expression, as long as
we have agreed on the order in which the terms are to be added.

Denoting the exact result of a computation also by the letter C, we have fi(C) =
C + e, where e is the absolute error of the computation. A more useful measure
is the relative error ¢ = e/C, provided that C # 0. You can easily verify that the
relative error € satisfies

(C) = C(1 +e). 2.5.1)

Example 2.5.2 One example suffices to show that the relative error is more meaning-
ful than the absolute error. Suppose we perform a computation on a 7-digit decimal
machine and get the result fi(C') = .9876572 x 1017, whereas the correct value is
C = 98765432 x 10'7. The computed value is clearly a good approximation to
the true value, but the absolute error is e = C' — fI(C) = .288 x 10'2, which looks
large unless it is compared with C. In the relative error the magnitude of C is au-
tomatically taken into account: € = ¢/C = .291 x 10~°. Now consider a different
computation in which fi(C) = .9876572 x 107! and C = .98765432 x 10715,
Now e = .288 x 10720, which appears extremely small until it is compared with C.
By contrast e = e/C = .291 x 1075, the same as before. That the relative error is
approximately 1075 is reflected in the fact that C' and fl(C) agree in their first five
decimal places. Because of this agreement, the difference between C' and fi{C) is
about five powers of 10 smaller that C'. That is, the relative error is approximately
1075.]

142 SENSITIVITY OF LINEAR SYSTEMS

Another point worth mentioning is that the absolute error has the same units as C.
If C is measured in volts (seconds, meters), then e is also measured in volts (seconds,
meters). By contrast the relative error is a dimensionless number; it has no units.

In this text we will normally measure errors in relative terms. The relative error
appears in various guises. For example, the expressions {| dz || /|| = |, || 6b|}/]|b|]. and
16 All/] A]|, with which we worked in Section 2.2, are expressions of relative error.
Also we have already observed that statements about the number of correct digits are
actually vague statements about the relative error. Finally, statements about percent
error are also statements about the relative error: percenterror = | relative error| x 100.

In our analysis we will not assume that our machine satisfies the IEEE standard.
Instead we will assume an ideal computer that performs each operation exactly and
then rounds the result to the nearest floating point number. The IEEE standard
satisfies this assumption, so long as no overflows or underflows occur.! Our analysis
will ignore the possibility of overflow or underflow. Each individual computation
produces a roundoff error that is tiny in the relative sense. We will define the unit
roundoff u to be the largest relative error that can occur in a rounding operation.
The value of u depends on the system. In a system with a mantissa of s decimal
digits, the value of u will be around 107%, since the rounded value and the original
value agree to s decimal places. A careful analysis (Exercise 2.5.9) shows that
u = 1 x 10'~°. For IEEE single precision numbers u = 272% ~ 6 x 1078, and
for double precision numbers v = 2753 & 10716, Using the form (2.5.1), our ideal
floating-point operations satisfy

flzty) = (@xy)(l+ea) |allu
fifzy) = (zy)(1+e2) fe2| <u (2.5.3)
fi(z/y) = (z/y)(1+e3) les| < u.

Our analysis will take the results (2.5.3) as a starting point. These can give one a
false sense of security. Since the error made in each individual operation is small, one
might think that a great many operations would have to be made before significant
errors could accumulate. Unfortunately this turns out to be false.

To get a realistic idea of what can happen, we need to take account of the fact
that the operands z and y normally have some error in them already. Instead of the
correct values, = and ¥, the computer works with polluted values £ = x(1 + ¢;) and
7 = y(1 + €2). Instead of calculating zy or fl(zy), the computer calculates fl(Z4).
We need to compare fl(£§) with zy. We would like to be able to say thatif |¢; | < 1
and |e2| € 1, then I{(Z§) = zy(1 + €), where Je¢] <« 1. It turns out that such
a result does hold for multiplication, and there is an analogous result for division.
Unfortunately, addition and subtraction do not always behave so well.

Let us begin with the well behaved operations. The computer multiplies £ by ¢
to get fl(£9) = £J(1 + €3), where the roundoff error €5 satisfies |e3]| < v « 1 by

IThis assumes that the default “round to nearest” rounding mode is being used. The IEEE standard also
supports several other rounding modes. In all modes (2.5.3) continues to hold if we replace u by 2u.

ROUNDOFF ERRORS; BACKWARD STABILITY 143

(2.5.3). Thus
i(29) = z(1+e)y(l+e)(d+es)
= zy(l+e; + €+ €3+ €162 + €163 + €263 + €1€2€3)
= zy(l+e),

where e = €1 + €3 + €3 + €162 + €163 + €2€3 + €1€2€3. The terms involving products
of two or more ¢; are negligible because all ¢; are small. Thus € = €; + €2 + €3.
Since ¢ | € 1, |e2] <€ 1, and |€e3| < 1, it also holds that |e| < 1. We conclude
that multiplication is well behaved in the presence of errors in the operands.

In order to analyze division, we begin by recalling from the theory of geometric

series that 1

1+ e

Since |ez| « 1, the approximation 1/(1 + €3) &~ 1 — €2, obtained by ignoring
quadratic and higher terms, is good. Thus

f _ .Z‘(1+61)
ﬂ(y) = Jire) T
§(1+el)(1 —&)(1 +e3)

:1—62+6%—€3+"'

1%

Q

T
—&(1 +€ — € +e3).

Therefore fi(z/y) = (z/y)(1+¢€), where € = €; — €2 +€3. We conclude that division
is well behaved in the presence of errors.

Our analysis of addition will be a little bit different. We know that the difference
between fl(£ + §) and £ + § is relatively small, so we will simply compare £ + § with
z + y. (We could have done the same in our analyses of multiplication and division.)
This simplifies the analysis slightly and has the advantage of making it clear that any
serious damage that is done is attributable not to the roundoff error from the current
operation but to the errors that had been made previously.

t+9 = z(l+ea)+y(l+e)
= (x+y)+ze1+y62

T Y
T+ 1+ € + €).
(y)(ar+y1 w+y2>

Thus £ + § = (z + y)(1 + €), where

€= ad €1 +
z+Yy r+y

€g.

Given that |€; | <« 1 and |ez| < 1, we can say that |e| < 1 provided that neither x
nor y is large compared with z + y. If, on the other hand, « or y is large compared
with z + y, then € can and probably will be large. That is, the computed result

144 SENSITIVITY OF LINEAR SYSTEMS

is probably inaccurate. This occurs when (and only when) z and y are are almost
exactly opposites of each other, so that they nearly cancel one another out when they
are added.

An identical analysis holds for subtraction.

Exercise 2.5.4 Show thatif £ = 2(1+¢;) and § = y(1 + €2). where | €1 | < 1and |es| < 1,
then & — § = (z — y)(1 +¢€), where || < 1 unless z or y is much larger than z — y.
O

If z and y are nearly equal, so that — y is much smaller than both z and y, then
the computed result — §j can and probably will be inaccurate.

We conclude that both addition and subtraction are well behaved in the presence of
errors, except when the operands nearly cancel one another out. Because cancellation
generally signals a sudden loss of accuracy, it is sometimes called catastrophic
cancellation.

Example 2.5.5 It is easy to see intuitively how cancellation leads to inaccurate
results. Suppose an eight-digit decimal machine is to calculate z — y, where z =
.31415927... x 10! and y = .31415916.. .. x 10 . Due to errors in the computation
of z and y, the numbers that are actually stored in the computer’s memory are
% = .31415929 ... x 10! and § = .31415914. .. x 10 . Clearly these numbers are
excellent approximations to z and y; they are correct in the first seven decimal places.
That is, the relative errors €; and ey are of magnitude about 10~7. Since £ and 4 are
virtually equal, all but one of the seven accurate digits are canceled off when Z — 3 is
formed: & — § = .00000015 x 10! = .15000000 x 10~°. In the normalized result
only the first digit is correct. The second digit is inaccurate as are all of the zeros
that follow it. Thus the computed result is a poor approximation to the true result
z+y=.11... x 107>, the relative error is about 36 percent. O

This example demonstrates a relatively severe case of cancellation. In facta whole
range of severities is possible. Suppose, for example, two numbers are accurate to
seven decimal places and they agree with each other in the first three places. then
when their difference is taken, three accurate digits will be lost, and the result will be
accurate to four decimal places.

We have demonstrated not only that cancellation can cause a sudden loss of
relative accuracy, but also that it is the only mechanism by which a sudden loss of
accuracy can occur. The only other way an inaccurate result can occur is by gradual
accumulation of small errors. Although it is possible to concoct examples where this
happens, it is seldom a problem in practice. The small errors that occur are just as
likely to cancel each other out, at least in part, as they are to reinforce one another,
so they tend to accumulate very slowly. Thus as a practical matter we can say that if
a computation has gone bad, there must have been at least one cancellation at some
crucial point. In other words, if no cancellations occur during a computation (and
the original operands were accurate), the result will generally be accurate.

Unfortunately it is usually difficult to verify that no cancellation will occur in
a given computation, and this makes it hard to prove that roundoff errors will not

ROUNDOFF ERRORS; BACKWARD STABILITY 145

spoil the computation. The first attempts at error analysis took the forward or direct
approach, in which one works through the algorithm, attempting to bound the error
in each intermediate result. In the end one gets a bound for the error in the final
result. This approach usually fails, because each time an addition or subtraction is
performed, one must somehow prove either that cancellation cannot occur or that a
cancellation at that point will not cause any damage in the subsequent computations.
This is usually impossible.

Backward Error Analysis

Because of the threat of sudden loss of accuracy through cancellation, the pioneers
of scientific computing were quite pessimistic about the possible effects of roundoff
errors on their computations. It was feared that any attempt to solve, say, a system
of 50 equations in 50 unknowns would yield an inaccurate result. The early attempts
to solve systems of linear equations on computers turned out generally better than
expected, although disasters did sometimes occur. The issues were not well under-
stood until a new approach, called backward error analysis, was developed. The new
approach does not attempt to bound the error in the result directly. Instead it pushes
the effects of the errors back onto the operands.

Suppose, for example, we are given three floating-point numbers z, y, and z,
and we wish to calculate C = (2 + y) + z. The computer actually calculates
C = fi(fi(z + y) + z). Even if the operands are exact, we cannot assert that the
relative error in C is small: fi(z + y) is (probably) slightly in error, so there can
be large relative error in C if cancellation takes place when fl(z + y) is added to z.
However, there is something else we can do. We have

C={z+y)(1+ea)+2(1+e),

where [e1], |e2] < u < 1. Define €3 by (1 +€3) = (1 + €1)(1 + €2), so that
les| ~ |e1 + €| € 1. ThenC = (z+y)(1+€3)+2(1+e2). DefiningZT = 2(1+€3),
J=y(1+¢€3),and Z = z{1 + €3), we have

C=Z+7) +Z

Notice that Z, 7, and 7 are extremely close to z, y, and z, respectively. This shows
that C is the exact result of performing the computation {(z + y) + z using the slightly
perturbed data T, 7, and Z. The errors have been shoved back onto the operands.
The same can be done with subtraction, multiplication, division, and (with a bit of
ingenuity) longer computations.

In general suppose we wish to analyze some long computation C(z1, ..., 2m)
involving m operands or input data z;,. .., zn,. Instead of trying to show directly
that fi(C(z1,...,2m)) isclose to C(z1,. .., 2m), a backward error analysis attempts
to show that fi{C{(z1, ..., zm)) is the exact result of performing the computation with
slightly perturbed input data; that is,

(C(z1,---,2m)) = C(Z1, .., Zm),

146 SENSITIVITY OF LINEAR SYSTEMS

where Zy, . . ., Zp, are extremely close to 23,. .., zy,. By extremely close we usually
mean that the error is a modest multiple of the unit roundoff u. If such a result holds,
the computation is said to be backward stable.

Of course the analysis does not end here. The backward error analysis has to
be combined with a sensitivity analysis of the problem. If (1) the computation is
backward stable, and (2) we can show that small perturbations in the operands lead
to small perturbations in the results, then we can conclude that our computed result
is accurate.

For example, if our problem is to solve a nonsingular linear system Az = b,
then the operands or inputs are the entries of A and b, and the output is z. We
obtain z from A and b by some specified computation z = C(A4,b), for example,
Gaussian elimination with complete pivoting. In this context we normally use the
word algorithm instead of computation. If we perform the computations in exact
arithmetic, we get x exactly, but if we use floating-point arithmetic, we obtain an
approximate solution £ = fl(C(A,5)). In this context the algorithm is backward
stable if there exist A and b that are extremely close to A and b, respectively, such
that & = C(A, b), that is, A& = b exactly. Another way to say this is that & satisfies
(A+6A)E = b+ Sbexactly for some § A and 6b such that [|§A||/|| A|| and || 851 /|] b]]
are tiny, that is, a small multiple of w.

As we well know by now, backward stability does not imply that £ is close to .
The sensitivity of the problem is given by the condition number of A. If the algorithm
is backward stable, and the coefficient matrix is well conditioned, then the computed
solution is accurate. If, on the other hand, the matrix is ill conditioned, the solution
may well be inaccurate, even though the algorithm is backward stable.

The backward approach to error analysis separates clearly the properties of the
problem (e.g. solve Az = b) from the properties of the algorithm (e.g. Gaussian
elimination with complete pivoting). The sensitivity analysis pertains to the problem,
and the backward error analysis pertains to the algorithm. We say that the problem
is well conditioned if small changes in the input lead to small changes in the results.
Otherwise it is ill conditioned. An algorithm is backward stable if it returns answers
that exactly solve some slightly perturbed problem. It follows that a backward stable
algorithm will be able to solve well-conditioned problems accurately. We will adopt
the attitude that it is unreasonable to expect any algorithm to solve ill-conditioned
problems accurately. Therefore we will judge an algorithm to be satisfactory if it is
backward stable.

The backward approach to error analysis succeeds because it is much less ambi-
tious than the forward approach. The latter attempts to prove that a given algorithm
always produces an accurate result, regardless of the sensitivity of the problem. This
is usually impossible.

Small Residual Implies Backward Stability

If we say that an algorithm is backward stable (with no further qualification), we
mean that it performs in a backward stable manner on all possible sets of input

ROUNDOFF ERRORS; BACKWARD STABILITY 147

data. However, the term can also be used in a much broader sense. If we use an
algorithm, say Gaussian elimination, to solve a particular problem Az = b (for some
specific choice of A and b), we will say the the algorithm is backward stable on that
particular problem if it produces an Z that is the exact solution of a nearby problem
(A+8A)2 =b+ 6b.

For the linear system problem (and many other problems) there is a simple a
posteriori method checking the backward stability of a computation: check the
residual. The problem is to solve Az = b. Whatever method we use to get a solution
Z, we can easily calculate the residual # = b— A%. As we already noted in Section 2.4,
 is the exact solution of A% = b + &b, where &b = —r. If || 8b]|/||b]| is tiny, then &
is indeed the solution of a nearby system. Thus the algorithm is backward stable on
this problem. To summarize, a tiny residual implies backward stability.

The following exercise draws essentially the same conclusion by a different ap-
proach, in which the residual is associated with a perturbation in 4 instead of b.

Exercise 2.5.6 Let Z be an approximation to the solution of Az = b, and let 7 = b — Az.
Define §A € R™ " by 64 = arz”, where a = || £||; °.

(a) Show that £ is the exact solution of (A + §A4)Z = b.
(b) Show that ||6A ||, = |I7||/]|Z]], and

oAl _ ll7lls
Al NAlLlI2l;

a

Thus if ||r ||, is tiny relative to || A||,|| Z||,, then the algorithm (whichever algo-
rithm was used) is backward stable for this problem.
Additional Exercises

Exercise 2.5.7 Learn more about your computer’s arithmetic by running the following
MATLAB programs.

(a) What do you learn from running the following program?

u = .5%*u;
b =a+ u;
end
u

(b) What does this one tell you?

148 SENSITIVITY OF LINEAR SYSTEMS

a = 1;

while a “= Inf
a= 10*a

end

To get a more precise result, replace the 10by a 2. Youmight find help inf
informative.

(c) What does this one tell you?

a=1;
while a "= 0

a= .l*a
end

The outcome of this one is probably different from what you expected, based on
the information given in the text. The IEEE standard allows gradual underflow
through the use of subnormal numbers, once the minimum exponent is reached.

(d) What kind of arithmetic does MATLAB appear to be using? To learn more
about your computer (as used by MATLAB) try help computer, help
isieee, help inf,and help nan, for example.

O

Exercise 2.5.8 Write Fortran or C programs that perform the same functions as the programs

from Exercise 2.5.7. Make both single and double precision versions and try them

out. 8]
Exercise 2.5.9

(a) Show that in a base-3 floating-point number system the largest relative gap
between two consecutive normalized numbers occurs between

.1000...000 x B* and .1000...001 x B*.

(The value of the exponent ¢ is irrelevant.) Thus the largest relative error (the
unit roundoff) occurs when one tries to represent the number that lies half way
between these two.

(b) Show that the unit roundoffis % x B1~¢%, where S is the number base, and s is
the number of base-{3 digits in the mantissa.

.

2.6 PROPAGATION OF ROUNDOFF ERRORS IN GAUSSIAN
ELIMINATION

Now that we know something about floating-point arithmetic and roundoff errors,
we are ready to analyze the effects of roundoff errors on Gaussian elimination. Our

PROPAGATION OF ROUNDOFF ERRORS 149

formal tool will be backward error analysis, but we defer that to Section 2.7. In this
section we will see that even without backward error analysis we can get some good
insights through the study of well chosen examples.

Gaussian Elimination with lll-Conditioned Matrices

Our studies of the sensitivity of linear systems have given us ample reason to believe
that there is no point in trying to solve severely ill-conditioned systems. Further
insight can be gained by taking a heuristic look at what happens when one tries to
solve an ill-conditioned system by Gaussian elimination with partial pivoting. We
will assume that the rows and columns of the coefficient matrix are not out of scale.

When we do row operations, we take linear combinations of rows in such a way
that zeros are deliberately created. Since the rows of an ill-conditioned matrix are
nearly linearly dependent, there is the possibility of entire rows being made almost
exactly zero by row operations. This possibility is encouraged by the progressive
introduction of zeros into the array. Let us say that a row is bad if it is nearly a linear
combination of previous rows. Suppose the kth row of A is the first bad row. After
k — 1 steps of Gaussian elimination we will have subtracted multiples of the first
k — 1 rows from the kth row in such a way that there are now zeros in the first £ — 1
positions. If the kth row were exactly a linear combination of the previous rows (and
exact arithmetic were used), the entire kth row would now be zero. (Why?) Since it
is only approximately a linear combination of the previous rows, it will still contain
nonzero entries, but these entries will typically be tiny. They are not only tiny but
but also inaccurate, because they became tiny through cancellation, as multiples of
the earlier rows were subtracted from row k.

One of these tiny, inaccurate entries is the potential pivot in the (k, k) position.
Because it is small, the kth row will be interchanged with a lower row that has a larger
entry in its kth position, if such a row exists. In this way the bad rows get shifted
downward. Eventually a step will be reached at which only bad rows remain. At this
point all choices of pivot are tiny and inaccurate. Although the presence of small,
inaccurate numbers is not necessarily disastrous to the computation, the use of one
as a pivot must be avoided if possible. In the present scenario we are forced to use a
tiny, inaccurate pivot. This is used as a divisor in the computation of not-so-small,
inaccurate multipliers, whose error pollutes all subsequent rows. The pivots are also
used as divisors in the last step of the back-substitution process. Each component of
the computed solution is a quotient whose divisor is a pivot. We cannot expect these
quotients to be accurate if the divisors are not.

The above analysis is obviously heuristic and is not claimed to be universally
valid. A different flavor of ill conditioning is exhibited by the Kahan matrix [41].

Example 2.6.1 Consider the ill-conditioned matrix

A=

1000 999
999 998 |°

150 SENSITIVITY OF LINEAR SYSTEMS

which we have discussed previously. Since the rows are nearly linearly dependent,
when a zero is created in the (2, 1) position, the entry in the (2, 2) position should
become nearly zero as well. Indeed the multiplier is lo; = .999, and the (2, 2) entry
becomes

998 — (.999)(999) = 998 — 998.001 = —.001.

This is indeed small, and the result was obtained by severe cancellation. There is
no error in the result, because it was computed by exact arithmetic. Consider what
happens when five-digit decimal floating-point arithmetic is used. The computation
yields

998.00 — (.99900)(999.00) = 998.00 — 998.00 = 0.

The matrix appears to be singular! a

This example might remind you of a remark that was made in Chapter 1. Not
only can a nonsingular matrix appear singular (as just happened); the reverse can
occur as well and is actually a much more common occurrence. We remarked that
if a Gaussian elimination program attempts to calculate the LU decomposition of
a singular matrix, it almost certainly will not recognize that the matrix is singular:
Certain entries that should become zero in the course of the calculation will turn out
to be nonzero because of roundoff errors. Thus in numerical practice it is impossible
to distinguish between ill-conditioned matrices and singular matrices. In contrast
to the theoretical situation, where there is a clear distinction between singular and
nonsingular, we have instead a continuum of condition numbers, ranging from the
well conditioned to the severely ill conditioned, with no clear dividing line in the
middle. (Exceptions to this picture are certain matrices that are obviously singular,
such as a matrix with a row or column of zeros or two equal rows.)

The next example shows that the distinction between good and bad rows is not
always clear. It can happen that the accuracy of a computation deteriorates gradually
over a number of steps.

Example 2.6.2 We introduced the ill-conditioned Hilbert masrices, defined by h;; =
1/(i + j — 1), in Example 2.2.9. For example,

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

Hy =

The rows look very much alike, which suggests ill conditioning. According to
MATLAB, x5(Hy) =~ 1.6 x 10%.

Let us see how the ill conditioning manifests itself during Gaussian elimination.
For the first step, there is no need to make a row interchange, since the largest
entry is already in the pivotal position. You can easily check that after one step the

PROFAGATION OF ROUNDOFF ERRORS 151

transformed array is

1 1/2 1/3 1/4
/2] 1/12 1/12 3/40
1/3| 1712 4/45 1/12
1/4| 3/40 1/12 9/112

The second step operates on the submatrix

1/12 1/12 3/40
1/12 4/45 1/12 |,
3/40 1/12 9/112

all of whose entries are smaller than the original matrix entries. Thus each entry has
undergone a small amount of cancellation. Of course these numbers are perfectly
accurate because we calculated them by exact arithmetic. If we had used floating-
point arithmetic, each of the entries would have suffered a slight loss of accuracy due
to the cancellation. Notice that all of the entries of this submatrix are quite close to
1/12; the rows are almost equal.

The potential pivots for the second step are smaller than those for the first step.
Again there is no need for a row interchange, and after the step the transformed

submatrix is
1/12 1/12 3/40

I] 1/180 1/120
9/10 | 1/120 9/700

The entries of the submatrix

1/180 1/120
[1/120 9/700]

are even smaller than before; more cancellation has taken place. The potential pivots
for the third step, 1/180 and 1/120, are both quite small. Since the latter is larger, we
interchange the rows (although this has little effect on the outcome). After the third

step, we have
1/120 9/700
[2/3 | -1/4200 J)
The final pivot is —1/4200, which is even smaller.
Now let us see what happens when the same operations are performed in three-digit
decimal floating-point arithmetic. The original array is

1.00 .500 .333 .2530
500 333 .250 .200
333 .250 .200 .167
250 .200 .167 .143

Some of the entries are already slightly in error. On the first step the (4, 3) entry (for
example) is modified as follows:

167 — (.250)(.333) = .167 — .833 x 107 = .837 x 107"

152 SENSITIVITY OF LINEAR SYSTEMS

Comparing it with the correct value 1/12 = .833 x 10!, we see that there is a
substantial error in the third digit. The complete result of the first step is

1.000 .500 333 .250

500] .830x 107t .830x 10~! .750 x 107!
333 | .830x 1071 .890x 107! .837 x 107!
250 | 750 x 107! 837 x 107! .805 x 107!

The result of the second step is (ignoring the first row and column)

830x 10! 830x 10! .750 x 10™!
1.00 600 x 1072 870 x 102
904 870 x 1072 127 x 101!

Significant cancellations have now taken place; most of these numbers have only one
correct digit. For example, the following computation produced the (4, 3) element:

837 x 107! — (.904)(.830 x 107) = (.837 — .750) x 107! = .870 x 1072

Comparing this result with the correct value 1/120 & .833 x 1072, we see that it has
only one correct digit. The result of the third and final step is

870 x 1072 127 x 107!

690 —.600 x 1074 |~

The (4,4) entry —.600 x 10~* is not even close to the correct value —1/4200 =
—.238 x 1072 O

Exercise 2.6.3 Work through the computations in Example 2.6.2, observing the cancellations
and the accompanying loss of accuracy. Remember that if you wish to use your
calculator to simulate three-digit decimal floating-point arithmetic, it does not suffice
simply to set the display to show three digits. Although only three digits are displayed,
nine or more digits are stored internally. Correct simulation of three-digit arithmetic
requires that each intermediate result be rounded off before it is used in the next
computation. A simple way to do this is to write down each intermediate result and
then enter it back into the calculator when it is needed. a

Exercise 2.6.4 Work Example 2.6.2 using four-digit arithmetic instead of three. You will see
that the outcome is not nearly so bad. o

Exercise 2.6.5 Use MATLAB to explore the extent of cancellation when Gaussian elimination
is performed on larger Hilbert matrices.

(a) In MATLAB, type A = hilb(7) to get H7. To get the LU decomposition
with partial pivoting, type [L,U] = lu(A) . Notice that the matrix L is
not itself unit lower triangular, but it can be made unit lower triangular by
permuting the rows. This is because MATL.AB’s 1u command incorporates
the row interchanges in the L matrix. Our real object of interest is the matrix

PROPAGATION OF ROUNDOFF ERRORS 153

U, which is the triangular matrix resulting from Gaussian elimination. Notice
that the further down in U you go, the smaller the numbers become. The ones
at the bottom appear to be zero. To get a more accurate picture, type format
long and redisplay U.

(b) Generate H,5 and its LU decomposition. Observe the U matrix using format
long.

m]

Exercise 2.6.6 Let z denote the vector whose entries are all ones (Using MATLAB: z =
ones(n, 1)), and let b = H,z, where H,, is again the n x n Hilbert matrix. If
we now solve the system H,x = b for x, we should get z as the solution in theory.
Using MATLAB (xhat = A\Db), try solving H,z = b forn = 4, 8, 12, and 16,
and see what you get. In each case compute the condition number «2(H,,) and the
norm of the difference: || — z||,, where & is the computed solution. Calculate the
residual # = b — H, Z, too. a

Exercise 2.6.7 The previous exercise exaggerates somewhat the intractability of Hilbert
matrices. There we saw that already for n = 12 we get a bad solution (assuming
double-precision IEEE arithmetic). Actually, how bad the solution is depends not
only on the matrix, but also on the vector . Most choices of b will not give nearly such
bad results as those we just saw. Carry out the following computations with n = 12.
Use double precision (which you get automatically from MATLAB) throughout.

(a) Let z denote the vector of ones, as before, and solve the system Hi,y = z for
y. Note that ||y || is huge.

(b) Define a vector b by b = Hjoy. In principle b should be the same as z, but in
the presence of roundoff errors it is a little different. Calculate band ||b — z||,.

(c) Now consider the system Hi;x = b. The way b was defined, the solution «
ought to be the same as y. However, our experience from the previous problem
suggests that the computed solution £ may be far from y. Go ahead and solve
Hix = b and compare the computed £ with y. Notice that they agree to
almost two decimal places. This is not nearly as bad as what we saw in the
previous problem. Calculate the relative error ([— y||,/[| %,

(d) Calculate the norm of the residual 7 = & — AZ, and use it and the condition
number to compute an upper bound on the relative error (Theorem 2.4.1). Note
that this bound is very pessimistic compared to the actual relative error.

a

Another family of ill-conditioned matrices is the Lotkin matrices. The n x n
Lotkin matrix is identical to the Hilbert matrix H,,, except that its first row con-
sist entirely of ones. These nonsymmetric matrices are just as ill conditioned as
the Hilbert matrices. To get the 6 x 6 Lotkin matrix in MATLAB type A =

154 SENSITIVITY OF LINEAR SYSTEMS

gallery{‘lotkin’, 6). For more information about the gallery of Higham
test matrices, type help gallery. For more information about Lotkin matrices,
type help private/lotkin.

Exercise 2.6.8 Rework each of the following exercises, using Lotkin matrices in place of
Hilbert matrices: (a) Exercise 2.6.5, (b) Exercise 2.6.6, (c) Exercise 2.6.7. 0

Why Smali Pivots Should Be Avoided

In Section 1.8 we introduced the partial pivoting strategy, in which the pivot for the
kth step is chosen to be the largest in magnitude of the potential pivots in column k.
The justification given at that time was that we wanted to avoid using as a pivot a
small number that would have been zero except for roundoff errors made in previous
steps. Since then we have studied cancellation and ill-conditioned matrices and can
make a more general statement: We wish to avoid using a small pivot because it may
have become small as the result of cancellations in previous steps, in which case it
could be very inaccurate. The dangers of using an inaccurate pivot were stated in the
first part of this section, in connection with ill conditioning.

In the following example we consider a different scenario. We show what can go
wrong if a small pivot is used even though large pivots are available. Here the pivot
is not inaccurate; it ruins the computation simply by being small.

Example 2.6.9 Consider the linear system

002 1.231 2471 T 3.704
1.196 3.165 2.543 z2 | = | 6.904 |. (2.6.10)
1.475 4.271 2.142 z3 7.888

This system is well conditioned (x2(A) ~ 30), and we will see that it can be solved
accurately by Gaussian elimination with partial pivoting. But first let us observe what
happens when we use Gaussian elimination without interchanges. We will see that
the use of the exceptionally small (1,1) entry as a pivot destroys the computation.
The computations will be done in four-digit decimal floating-point arithmetic. You
should think of the numbers in (2.6.10) as being exact. You can easily check that the
exact solution is z = [1 1 1]7. The roundoff error effects you are about to observe
are caused not because the small pivot is inaccurate (It is not!), but simply because it
is small.
The multipliers for the first step are

1.196 1.475
= e— = . = — = KN 2 .
l21 002 598.0 and I3 002 737.5 (2.6.11)

These multiplied by the first row are subtracted from the second and third rows,
respectively. For example, the (2, 2) entry is altered as follows: 3.165 is replaced by

3.165 — (598.0)(1.231) = 3.165 — 736.1 = —732.9. (2.6.12)

PROPAGATION OF ROUNDOFF ERRORS 155

These equations are not exact; four-digit arithmetic was used. Notice that the resulting
entry is much larger than the number it replaced and that the last two digits of 3.165
were lost (rounded off) when a large number was added to (i.e. subtracted from) it.
This type of information loss is called swamping. The small number was swamped
by the large one. You can check that swamping also occurs when the (2, 3), (3,2),
and (3, 3) entries are modified. In fact three digits are swamped in the (2,3) and
(3, 3) positions. At the end of the first step the modified coefficient matrix looks like

.002 1231 2471
598.0 | —-732.9 -—1475.
737.5 | —903.6 —1820.
The second step of Gaussian elimination works with the submatrix

A= -732.9 -—1475.
~ | -903.6 -1820. |-

Since this matrix was obtained by subtracting very large multiples of the row
[1.231 2.471] from the much smaller numbers that originally occupied these rows,
the two rows of A are almost exact multiples of [1.231 2.471]. Thus the rows of A
are nearly linearly dependent; that is, A is ill conditioned. You can easily check that
k3(A) = 6400, which is huge, considering that four-digit arithmetic is being used.

The multiplier for the second step is I35 = (—903.6)/(—732.9) = 1.233. Itis
used only to modify the (3, 3) entry as follows:

—1820. — (1.233)(—1475.) = —1820. + 1819. = —1.000.

Severe cancellation occurs here. This is just an attempt to recover the information
that was lost through swamping in the previous step. Unfortunately, that information
is gone, and consequently the result —1.000 is inaccurate. At the end of the second
step, the LU decomposition is complete:

.002 1.231 2.471
598.0 | —732.9 —1475.
737.5 1.233 | -1.000

The forward substitution step yields

y1 = 3.704
y2 = 6.904 — (598.0)(3.704) = 6.904 — 2215. = —2208.
ys = 7.888 — (737.5)(3.704) — (1.233)(—2208.)

7.888 — 2732. + 2722. = —2724. 4+ 2722. = -2.000

Notice that the last three digits of 6.904 were swamped in the computation of 2, and
severe cancellation occurred in the calculation of y3. Thus y3 is inaccurate.
The first step of back substitution is

—2.000
= Vi

= = = 2. .
U33 —1.000 000

156 SENSITIVITY OF LINEAR SYSTEMS

Being the quotient of two inaccurate numbers, x5 is also inaccurate. Recall that the
correct value is 1.000. You can carry out the rest of the back substitution process and
find that the computed solution is [4.000, —1.012, 2.000]%, which is nothing like
the true solution.

Let us summarize what went wrong, speaking in general terms (and heuristically!).
When a pivot that is much smaller than the other potential pivots is used, large
multipliers will result. Thus very large multiples of the pivotal row will be subtracted
from the remaining rows. In the process the numbers that occupied those rows will
be swamped. The resulting submatrix (the matrix that will be operated on in the next
step) will be ill conditioned because each of its rows is almost exactly a multiple of
the pivotal row. Because of the ill conditioning, there will be cancellations in later
steps. These cancellations are actually just an attempt to uncover the information
that was lost due to swamping, but that information is gone.

Now let us see what happens when we solve (2.6.10) using partial pivoting.
Interchanging rows 1 and 3, we obtain the system

1475 4.271 2.142 1 7.888
1.196 3.165 2.543 r2 | = | 6.904
002 1231 2471 3 3.704

After one step the partially reduced matrix has the form

1.475 4271 2.142
.8108 —.2980 .8060
1.356 x 1038 1.225 2.468

When you carry out this computation, you can see that the information in the (2, 2),
(2,3), (3,2), and (3,3) positions is not swamped. There is, however, a slight
cancellation in the (2,2) and (2, 3) positions. The partial pivoting strategy dictates
that we interchange rows 2 and 3. In this way we avoid using the slightly inaccurate
number —.2980 as a pivot. After step 2 the LU decomposition is complete:

1.475 4271 2.142
1.356 x 10~3 1.225 2.468
.8108 —.2433 | 1.407

Forward substitution yields y = [7.888, 3.693, 1.407]7, and back substitution gives
the computed result
1.000
z= | 1.000
1.000

It is a matter of luck that the computed solution agrees with the true solution exactly,
but it is not luck that the computation yielded an accurate result. Accuracy is

guaranteed by the well-conditioned coefficient matrix together with Theorem 2.7.14.
O

Exercise 2.6.13 Work through the details of the computations performed in Example 2.6.9.
a

BACKWARD ERROR ANALYSIS OF GAUSSIAN ELIMINATION 157

2.7 BACKWARD ERROR ANALYSIS OF GAUSSIAN ELIMINATION

A major operation in many algorithms, including Gaussian elimination, is the accu-

mulation of sums
n
E wj .
=1

There are many ways to add n numbers together. For example, if we have four
numbers, we can add them in the “natural” way: first we add w; to wo, then we add
on wg, then wy, that is, ((w; + wa) + ws) + wy, or we can apply this process to any
reordering of wy, . . ., wq. Another possibility is to add w; to ws, add w3 to wy, then
add the two intermediate sums, that is, (w; + wa) + (w3 + wy).
If we accumulate a sum in different ways using floating-point arithmetic, we will
get different results, because the different ways have different roundoff errors. The
relative differences in the computed sums will usually be tiny, but they can be large
if there is a cancellation in the end (the summands add “nearly” to zero).
Our first task is to show that if a sum is accumulated in floating-point arithmetic,
the computation is always backward stable, regardless of the manner in which the
sum was accumulated. As before, we will let u be the unit roundoff. We will use
the notation O(u?) to denote terms of order u?. These are tiny terms that can be
neglected. For example, (1 + a;1)(1 + ag) = (1 + §8), where 8 = a1 + a2 + a10.
If|a1 | &~ wand |as| = u, then ajaz = O(u?), and we write 8 = o + a2 + O(u?).
n

Proposition 2.7.1 Suppose we compute the sum Z w; using floating-point arith-
=1

metic with unit roundoff u. Then !

n n
fl ij =ij(1+7j),
j=1 j=1

where |v;| < (n — L)u + O(u?), regardless of the order in which the terms are
accumulated.

Proof. The proof is by induction on n. The proposition is trivially true whenn = 1.
Now let m be any positive integer. We shall show that the proposition holds for
n = m, assuming that it holds for n < m, that is, for all sums of fewer than m terms.

Suppose we have reached the point in our computation of ZJ";I w; at which we
are within one addition of being done. At this point we will have accumulated two
sums, one being the sum of, say, £ of the w; and the other being the sum of the
otherm — k. It mightbe that k = lork=m ~ 1. Inanyevent,1 <k <m — L.
For notational convenience relabel the terms so that the terms in the first sum are
wi, ..., Wg. Then the two sums that we have so far are

k m
E Wy and Z wj.
Jj=1

j=k+1

158 SENSITIVITY OF LINEAR SYSTEMS

Since each of these sums has fewer than m terms, we have, by the induction hypoth-
esis,

k k
fl ij Zw,-(1+aj)
i=1 -1

i=

and
m m
Al D owi]= > will+ay),
j=k+1 J=k+1
where
la;| < (k — Du+ O(u?) forj=1,...,k,
=1 m-k-Lu+0®?) forj=k+1,...,m,

regardless of the order in which each of these sums was accumulated. Since k — 1 <
m—2andm —k—1<m — 2, we have

laj| < (m—2u+0@W?) forj=1,...,m.

Adding the two sums together, we have

m k m
fl ij = fi{fl ij +1fl Z (7
j=1 7=1 j=k+1

k m
ij(l-%—aj)-i- Z wj(1+aj)) (1+8)

Jj=k+1

Il

iwj(l + a]-)(l +,3)

i=1
B is the roundoff error of the current addition and satisfies | 3| < u by (2.5.3). Let
v = o + B + a5, so that (1 +v;) = (1 + a;)(1 + §). Then
Il < logl+]8]+0(?)
< (m=2u+0®w?) +u+0®?)
(m - Lju + O@?).

We have thus shown that
m m
> w | =D w+),
j=1 j=1

where |v;| < (m — 1)u + O(u?). This completes the proof. 0

The numbers ; in Proposition 2.7.1 can be termed relative backward errors.
There are at least three reasons why the inequalities [v;{ < (n — 1)u + O(u?)

BACKWARD ERROR ANALYSIS OF GAUSSIAN ELIMINATION 159

grossly overestimate |v;|. First of all, the factor n — 1 reflects the fact that each
summand participates in at most » — 1 additions and is therefore subjected to at most
n — 1 roundoff errors. ~y; is approximately the sum of all the roundoff errors that
occur in sums involving w; (recall v; ~ a; + f3). The exact number of roundoff
errors that each term suffers depends on the method of summation and is, on average,
much less than n — 1. (You can clarify this for yourself by working Exercise 2.7.24.)
Thus most y; are sums of many fewer than n — 1 roundoffs.

Secondly, u is an upper bound on each roundoff error. A typical round off will
be significantly less than u. Finally, and most importantly, when roundoff errors are
added together, they sometimes reinforce one another and they sometimes (partially)
cancel each other out. Bounds like |v;| < (n — 1)u 4+ O(u?) have to take into
account the worst possible (and highly unlikely) case, where all roundoff errors are
maximal and reinforce one another.

For these reasons, the -y; are more likely to be much closer to u than (n — 1)u, so
the factor {n — 1) can be ignored in practice. Thus we consider Proposition 2.7.1 to
be proof that the accumulation of sums is backward stable, regardless of how large n
is.

Backward Stability of Forward and Back Substitution

Let G be a nonsingular, lower-triangular matrix, and let b be a nonzero vector. Then
we can solve the system Gy = b in about n? flops by forward substitution. Our
next theorem shows that the forward substitution algorithm is backward stable. First
we introduce some simplifying notation. Given an n X m matrix (or, in particular,
a vector) C' with (¢,) entry ¢;;, we define | C'|, the absolute value of C, to be the
n x m matrix whose (i, §) entry is |¢;; |. Also, given two n x m matrices C' and
F, we will write C' < I if and only if ¢;; < f;; for all ¢ and j. With these new
definitions, we can now make the following statement.

Theorem 2.7.2 Ler G be a nonsingular, lower-triangular matrix, and letb # 0. Ifthe
system Gy = b is solved by any variant of forward substitution using floating-point
arithmetic, then the computed solution § satisfies

(G+6G)j = b, 2.7.3)

where 6G satisfies
[6G| < 2nu|G| + O(u?). (2.7.4)

This inequality means that | §g;; | < 2nu|g;;| + O(u?) for all i and j. Thus the term

O(u?) in (2.7.4) stands for an n X n matrix, each of whose entries is of order u?.
This is not the tightest possible result. For a more careful argument that gets rid

of the factor 2, see [41].

Proof. Once we have 1, ..., y;—1, we compute

i—1
by — 20071 9iY;
Yy =
Gii

160 SENSITIVITY OF LINEAR SYSTEMS

in principle. In practice we use the computed quantities §y,...,%;_; and make
further rounding errors, so

ST

Gii

The numerator is just a sum of 4 terms, but before we can do any additions, we have
to do the multiplications. We have fl(g;;§;) = 9:;9;(1 +), where |c;;| < u
by (2.5.3). Once we have the products, we can accumulate the numerator. Different
variants of forward substitution will do this in different ways. Since it is a sum of ¢
terms, Proposition 2.7.1 guarantees that no matter how it is done,

i—1 i-1
fil b — Zgiﬂ?j(l +aig) | =bi(1+va) - Zgij?)j(l + a4) (1 + 74),
i=1 =1

where |v;; | < (i = 1)u + O(u?) for j = 1,...,i. Once this is done, we obtain §,
by a division, which introduces one more rounding error:

(bi(l + Vi) — Z;;ll 9i59;(1 + i) (1 + vi5)

g; = > (1+3;), (2.7.5)
Gii
where | 3;| < u.

We are aiming for the final result (2.7.3), in which all of the errors have been
pushed back onto G and, in particular, not onto b. To obtain this effect we divide
numerator and denominator in (2.7.5) by (1 +;;) (1 + 8;) to get rid of the error terms
that multiply b;. If we define €;; through the equations

(+ai;)(1+vi;) ifj <1,

1465 = s (2.7.6)

Ty 17 =5

we then have -
b = 2! g1+)9,
g, = i Z]_l gzg(‘L])y] ' 2.77)
gii(1 + €)

This last equation can be rewritten as

i
Zgi]’(l + eij)gj = bi.
j=1
Since this holds for all 4, we can write it as a single matrix equation

(G +6G)g = b,

where G is the lower-triangular matrix defined by dg;; = €;;¢:; fori > j. To
complete the proof we just have to show that |€;; | < 2nu + O(u?) for all i and j.

BACKWARD ERROR ANALYSIS OF GAUSSIAN ELIMINATION 161

Referring back to (2.7.6), we see that we need to deal with the factor 1/(1 + ;).
Since 7; = O(u), we have

1

T =Lt =17+ O0).
Thus, when j < i,
Ttej = (L4 ai)(L+)1 — i + O(u?))
= l4a+75 — 7+ 0@W?),
and
el < e+ ms | + || + O(w?)
< u+(i—Du+(i—-Du+Ok?)
= (2 - Du+ 0®?®) < 2nu+ O(u?).
By a similar analysis we get that | ¢;; | < 1u + O(u?) < 2nu + O(u?). 0
Exercise 2.7.8 Check that (2.7.7) is valid for ¢ = 1. O
Corollary 2.7.9 Under the conditions of Theorem 2.7.2 the computed solution ¥
satisfies
(G+6G)g = b,
where
16G]|,, < 2nul|Gl|, + O(u?). (2.7.10)
Proof. The bound (2.7.10) follows directly from (2.7.4), using the properties proved
in Exercise 2.7.11. O
Exercise 2.7.11

(a) Show that if |C| < | F'| (elementwise), then || C{| . < | Fl -
(b) Show that | C'l,, = | 1€ [l
O

The properties established in Exercise 2.7.11 hold also for the matrix 1-norm and
the Frobenius norm. Corollary 2.7.9 holds for any norm that satisfies these properties.

We have already noted that the factor 2 in the bounds (2.7.4) and (2.7.10)) can be
eliminated. The factor n can also be ignored, just as in Proposition 2.7.1.

Corollary 2.7.9 shows that forward substitution is normwise backward stable; that
is, the computed solution § is the exact solution of a nearby problem (G + 6G)jj = b,
where || 6G ||, /|| G ||, is tiny.

Theorem 2.7.2 is actually a much stronger result. It states not just that [|6G || is
tiny relative to |||, but each element perturbation dg;; is tiny relative to g;;, the
element it is perturbing. This property is called componentwise backward stability.

162 SENSITIVITY OF LINEAR SYSTEMS

Exercise 2.7.12 Construct an example of 2 x 2 matrices G and 6G such that || 6G || . /|| G ||
is tiny but | g;; |/| 9:; | is not tiny for at least one component (3, 7). m|

Theorems essentially identical to Theorem 2.7.2 and Corollary 2.7.9 hold for back
substitution applied to upper-triangular systems. We see no need to state these results.

Backward Error of Gaussian Elimination

Gaussian elimination is sometimes backward stable, sometimes not, depending on
circumstances. The basic results are the following two theorems, which are statements
about Gaussian elimination without pivoting. However, both of these results are
applicable to Gaussian elimination with row and column interchanges, since the
latter is equivalent to Gaussian elimination without interchanges, applied to a matrix
whose rows and columns were interchanged in advance. Thus these results can be
applied to Gaussian elimination with partial pivoting, complete pivoting, or any other
pivoting strategy.

Theorem 2.7.13 Suppose the LU decomposition of A is computed by Gaussian
elimination in floating-point arithmetic, and suppose no zero pivots are encountered
in the process. Let L and U denote the computed factors. Then

A+E=1U,
where
|E| < 2nu|L||U| + O(u?)

and

1Bl < 200 L)l 1T Nl + O(?).

Theorem 2.7.14 Under the conditions of Theorem 2.7.13, suppose we solve Az = b
numerically by performing forward substitution with L followed by back substitution
with U in floating-point arithmetic. Then the computed solution T satisfies

(A+54)% = b,

where
|6A| < 6nu | L] |U| + O(u?)

and

16406 < 6ru || Ll 1T Il + O(u?).

We will defer the proofs of these results until after we have discussed their
implications.?

2These theorems have been stated in the form in which they will be proved. They are not the best possible
results; a factor of 2 can be removed from each of the bounds.

BACKWARD ERROR ANALYSIS OF GAUSSIAN ELIMINATION 163

Looking at either of these Theorems, we see that whether or not Gaussian elimina-
tion is backward stable depends upon how big L and U are. If | L|| || U ||, is only
a modest multiple of || A ||, then we can conclude that || 6 A ||, /|| A || is 2 modest
multiple of the unit roundoff, and the operation is backward stable. (As before, we
ignore the factor n.) If, on the other hand, || L ool U lloo is much larger than || A|| .,
then we can draw no such conclusion. In this case the computation is probably not
backward stable.

Let us first consider Gaussian elimination without pivoting. The use of small
pivots can result in large multipliers, which are entries of L. Thus || L || o Can be
arbitrarily large. The large multipliers cause large multiples of some rows to be
added to other rows, with the effect that || U/ || is also large. These effects are seen
in Example 2.6.9. There we demonstrated how the unnecessary use of small pivots
can destroy the accuracy of Gaussian elimination. See Exercise 2.7.25 as well. We
conclude that Gaussian elimination without pivoting is unstable. R

Now consider partial pivoting. This guarantees that all of the multipliers {;; have
modulus less than or equal to 1 and has the tendency of keeping the norm of L from
being too large. In fact || L lloo < . Thus, to guarantee backward stability, we need
only show that || U || oo/ | Al cannotbetoo large. Unfortunately there exist matrices
for which [|U || . /|| All., & 2"~!. Anexample is given in Exercise 2.7.26. Because
271 is enormous even for modest values of n (e.g. 2" 7! > 102° when n = 100),
we cannot claim that Gaussian elimination with partial pivoting is unconditionally
backward stable, except when n is quite small.

Despite this bad news, partial pivoting is now and will continue to be widely used.
For example, it is the main method for solving Az = b in MATLAB and LAPACK.
Years of testing and experience have shown that the type of element growth exhibited
by the matrix in Exercise 2.7.26 is extremely rare in practice. Typically we see

1Vl .
Al ™ v
Hence, for practical purposes, Gaussian elimination with partial pivoting is consid-
ered to be a stable algorithm and is used with confidence.
A statistical explanation of the good behavior of partial pivoting is given by
Trefethen and Bau [71]. See also Exercise 2.7.27.
Since partial pivoting might occasionally perform badly, one would like to have a
way of checking whether one’s results are good or not. Fortunately such tests exist.
One such test would be simply to compute the ratio

2o 1T oo /11 Al

If this is not too large, the computation was backward stable. An even simpler test,
once Z has been computed, is to calculate the residual 7 = b — AZ. As we have
remarked before, AZ = b + db, where b = —r. (See also Exercise 2.5.6.) Thus a
small residual implies backward stability.

Another test is simply to compute the backward error in the LU decomposition:
E = LU — A. If || E|| is tiny, the computation was backward stable. However, this

164 SENSITIVITY OF LINEAR SYSTEMS

test is expensive. The computation of LU costs O(n®) flops, even if the triangular
form of the matrices is taken into account (Exercise 2.7.28).

Example 2.7.15 Using MATLAB we computed the LU decomposition (with partial
pivoting) of the 12 x 12 Hilbert matrix (A = hilb(12); [L,U] = 1lu(A);)
and then computed £ = LU — A. We found that || E{| /|| A|l,, & 2.7 x 1077
Also, || L], = 5.6, ||U|l,, = 3.1, and [|L|| /| U || o/l All, =~ 5.6. All of these
results signal stability. This shows that the poor results obtained in Exercises 2.6.7
and (especially) 2.6.6 are due entirely to the ill conditioning of the Hilbert matrix,
not to instability of the algorithm. In those exercises you also computed residuals
and found that they are tiny. This also demonstrates backward stability. |

Exercise 2.7.16

(a) Perform the computations indicated in Example 2.7.15 for Hilbert matrices of
dimension 12, 24, and 48. Notice that we have stability in every case.

(b) Repeat part (a) using Lotkin Matrices (A = gallery(’'lotkin’,n)).
a

Combplete pivoting is better behaved than partial pivoting. Element growth of
the type exhibited by partial pivoting in Exercise 2.7.26 is impossible. In the worst
known cases ||U||/|| A|| = O(n). It is also true that || L. || < n, as for partial
pivoting. Thus Gaussian elimination with complete pivoting is considered to be a
backward stable algorithm.

In spite of the theoretical superiority of complete pivoting over partial pivoting, the
latter is much more widely used. The reasons are simple: 1.) Partial pivoting works
well in practice, and it is significantly less expensive. 2.) Inexpensive a posteriori
stability tests exist.

Theorem 2.7.14 is also important for Gaussian elimination in sparse matrices.
Here there are conflicting objectives: one wishes not only to perform the elimination
in a stable manner, but also to keep fill-in as small as possible. One might therefore
pursue a strategy that does not always select the largest possible pivots. The stability
of the decomposition can be monitored by checking the size of the entries of L and
U as they are produced.

For symmetric, positive definite systems a result like Theorem 2.7.14 holds for
Cholesky’s method with L and U replaced by RT and R, respectively. It can
also be shown that || RT||z|| R||z cannot be large relative to || A||z. Therefore
Cholesky’s method is unconditionally backward stable. You can work out the details
in Exercise 2.7.29.

In summary, Gaussian elimination with partial or complete pivoting and Cholesky’s
method for positive definite systems are stable in practice. For partial pivoting this
assertion is based upon years of experience; for Cholesky’s method it is an iron-clad
fact. The factors of n that appear in the theorems are gross overestimates and can be
ignored. In practice we get a computed solution £ satisfying (A + § A)# = b, where
16Al/|| Al| = Cu, with C a modest multiple of 1. Thus the total effect of roundoff

BACKWARD ERROR ANALYSIS OF GAUSSIAN ELIMINATION 165

errors is not much greater than that of the initial roundoff errors in the representation
of A. These errors are usually much smaller than the original measurement errors in
A and b. These considerations lead to a useful rule of thumb.

Rule of Thumb 2.7.17 Suppose the linear system Ax = b is solved by Gaussian
elimination with partial or complete pivoting (or by Cholesky’s method in the positive
definite case). If the entries of A and b are accurate to about s decimal places and
k(A) = 10%, where t < s, then the entries of the computed solution are accurate to
about s — t decimal places.

“Proof.” We intended to solve Az = b, but our computed solution Z satisfies a
perturbed equation (A + 6 A)Z = b+ b, where A is the sum of measurement error,
initial rounding error, and the effect of roundoff errors made during the computation,
and 6b is the sum of measurement error and initial rounding error. We assume that
measurement error dominates. Since the entries of A and b are accurate to about s

decimal places,
164 11981

——— x107° and —— = 107°%.

Al il
Preparing to apply Theorem 2.3.9, we note that

lsall ., 154]
KA)DT— x10% 1 so 1—-k(A)-——F = 1.
ST S

Thus Theorem 2.3.9 gives roughly

loall o (I0AL L 180 _ ops
1|wn“‘”(“‘)<nAn+||b||> 10

where £ = z+4z. Thatis, the entries of £ are accurate to about s—¢ decimal places. O

Proofs of Theorems 2.7.13 and 2.7.14

Proof of Theorem 2.7.13. We begin by recalling (cf. (1.7.22) and (1.7.24)) that if
A = LU, then L and U are given by the formulas

LNy
Qij = D gy bikUsj

lij = fori > j (2.7.18)
Ujj
and
i—1
uij = ai; — »_ lipug; fori < j. (2.7.19)
k=1

All versions of Gaussian elimination perform the computations indicated in (2.7.18)
and (2.7.19), but different versions organize the computations differently.

166 SENSITIVITY OF LINEAR SYSTEMS

Let us first consider the computation of I;;. In practice the computed values [ik
and i; are used, and further roundoff errors occur. Thus the computed /;; satisfies

i—1 37
o= E)

Ujj

Different versions of Gaussian elimination accumulate the sum in the numerator in
different ways. Proposition 2.7.1 shows that no matter how it is done,
e
o aig (U4 7i5) = Do banliaeg (1 + o) (1 + ix)

ly; = . (1+5), (2.7.20)
Ujj

where |3 | < (5 — 1)u + O(u?). The quantities o and 3 are the roundoff errors
associated with the multiplications and the division, respectively, and they satisfy
|ag| <uand|B] < u.

Proceeding just as in the proof of Theorem 2.7.2, we divide the numerator and
denominator in (2.7.20) by (1 + +i;)(1 + §) to remove the error from the a;; term.
This move is not strictly necessary, but it yields a more elegant result. We then
simplify the resulting equation by consolidating the errors. Define d;z by

(he)(ine) f g < g,
146 = 1 ? . .
Tryaeg) TE=7.
Recalling that 1/(1 + ;) = 1 — 75 + 'yfj - 'yfj + .-+, we have, for ¥ < j,
dir = ok + Yix — ¥ij + O(u?), and)

10| < o]+ |%ik] + 75| + O@?)
< w+(G-Du+O0@)+ (G -Dut+ 0w = (27 — Lu+ O(u?).
Similarly, 6;; = —vi; — 8 + O(u?), and
1651 < |wsl+18|+0@?)

< (G- LDu+0@?®) +u+0@w?) = ju+ O@?).
Thus
[< 2nu+O@?), k=1,...,j.
In terms of 4%, (2.7.20) becomes
o ag = 307 b (1+ 8ir)
5 (1 + ds5)

lz'j =

Multiplying through by 4;;(1 + d;;) and rewriting the resulting expression so that all
of the error terms are consolidated into a single term e;;, we have

j
aij +ei; = Y Lt (2.7.21)
k=1

BACKWARD ERROR ANALYSIS OF GAUSSIAN ELIMINATION 167

for i > 7 (because we started from (2.7.18), which holds only for 7 > j), where

j
€ij = Zl KUk ik
Since | d;x | < 2nu + O(u?),

J
leij| < 2nu > [T | s | + O(u?) (2.7.22)
k=1
fori > j.
We obtained (2.7.21) and (2.7.22) for ¢ > j by starting from (2.7.18). The same
results can be obtained for ¢ < j by performing a similar analysis starting from
(2.7.19). Thus (2.7.21) and (2.7.22) hold for all ¢ and j. Writing (2.7.21) as a matrix

equation, we have .
A+ E=LU.

Writing (2.7.22) as a matrix inequality, we have
|E| < 2nu|L| |U| + O(?).

The bound on || E{|, follows immediately from the bound on | E|, using the
properties of the matrix co-norm established in Exercise 2.7.11. a

Exercise 2.7.23 Starting from (2.7.19), demonstrate that (2.7.21) and (2.7.22) hold for ¢ < j.
O

Proof of Theorem 2.7.14. In the forward substitution phase we compute § such that
(L+dL)j = b, where R A
16L| < 2nu|L|

by Theorem 2.7.2. In the back substitution phase we compute Z such that (0 +
0U)% = g, where) X
[6U | < 2nu|U|

by the upper-triangular analogue of Theorem 2.7.2. Thus £ satisfies exactly
(L + L)U + 6U0)& = b.

Multiplying out the product of matrices and usmg the fact (Theorem 2.7.13) that
LU = A+ E, where | E| < 2nu|L| |U| + O(u?), we have

(A+6A)E = b,

where

§A = E + (SL)U + L(3U) + (6L)(80).

168 SENSITIVITY OF LINEAR SYSTEMS

Applying the upper bounds that we have for E, 6ﬁ, and 6U , We obtain
[6A] < 6nu|L||U| + O(u?).

The bound on ||§A || follows immediately from this bound. a

Additional Exercises

Exercise 2.7.24 InProposition2.7.1 we showed that summation is backward stable, regardless
of the order. In the notation of Proposition 2.7.1 the backward errors vy; are bounded
by |7;] < (n — 1)u + O(x?). In this exercise we obtain tighter bounds on |v; | for

n

two specific orders of summation of E wj.
i=1

(a) First we consider the “obvious™ order, reversed for notational convenience.
Show that if we perform the computation in the order

(- (((wn + wno1) + wn—2)) + -+ w2) + w1
in floating-point arithmetic, then

i | < ju+ O(u?) if j < n,
Y=\ (n-Du+0@?) ifj=n.

(Look at small cases like n = 3 and n = 4, and observe the pattern.)

(b) Now consider summing by pairs. Calculate wy + ws, ws + wy, ws + weg, and
so on. If there is an odd term, just let it sit. Now you have a new list, which
you can sum by pairs. Keep summing by pairs until you have a single sum.
This is ecasiest to discuss when n is a power of 2, say n = 2% In this case, how
many additions does each term participate in? Express your answer in terms
of n. Show that if we carry out this process in floating-point arithmetic, we
have

1751 < (logy n)u + O(u?).

This is an excellent result, as log, n grows much more slowly than n.

O

Exercise 2.7.25 In this exercise you will assess the backward stability of Gaussian elimination

by calculating backward error in the LU decomposition: E = LU — A. Write a
MATLAB program that does Gaussian elimination without pivoting, for example

A randn (n) ;
L zeros(n); U = zeros(n);
for k = 1:n
U(k,k:n) = a(k,k:n) - L(k,1:k-1)*U(1l:k-1,k:n);

BACKWARD ERROR ANALYSIS OF GAUSSIAN ELIMINATION 169

L(k+l:n,k) = (a(k+1l:n,k) ~ ...
L(k+1l:n,1:k-1)*U(1:k-1,%k))/U{k,k);
end
L =L + eye(n);

(a) Calculate the LU decomposition of random matrices (A = randn(n) ;) for
several choices of n (e.g. n = 40, 80, 160), and note || L ||, || U ||, and the
norm of the backward error: || E|| = || LU — A||,,. On the same matrices
do Gaussian elimination with partial pivoting ([L, U] = 1u(A) ;) and cal-
culate the same quantities. Notice that partial pivoting decreases the backward
error and the norms of L and U, but the performance of Gaussian elimination
without pivoting is usually not conspicuously bad. That is, usually Gaussian
elimination without pivoting is able to calculate the LU decomposition (of a
random matrix) more or less stably.

(b) To demonstrate the weakness of Gaussian elimination without pivoting, give
it a matrix for which at least one of the pivots is guaranteed to be small.
The easiest way to do this is to use matrices whose {1,1) entry is tiny. Re-
peat the experiments from part (a) using matrices for which a;; is tiny. For
example,take A = randn(n); A(1,1) = 50*eps*A(1l,1);.MAT-
LAB’s machine epsilon eps equals 2u, twice the unit roundoff. For these
experiments n need not be large. Try several choices of n, but n = 2 is already
big enough.

Exercise 2.7.26 Let A, denote the n x n matrix whose form is illustrated by

1 0 0 01

-1 1 0 01

As =] -1 -1 1 01
-1 -1 -1 11

-1 -1 -1 -1 1

Show that if Gaussian elimination with partial pivoting is used, then A, can be
reduced to upper-triangular form without row interchanges, and the resulting matrix
U has up, = 2" 1. Thus || U ||, /|| 4]l = 2" /n. O

Exercise 2.7.27 1t is pointed out in [71] that the LU decomposition of a random matrix is
anything but random. If A = LU, then U = L~! A. We have stability if || U || is not
too much larger than || A||, and this will be the case if || L™ || is not large. In other
words, a necessary condition for instability is that || L™ || be large. In this exercise
we will see by experiment that Gaussian elimination with partial pivoting tends to
return matrices for which L~ is not large.

(a) Write a MATL AB program that generates random unit lower-triangular matri-
ces with entries between 1 and -1. For example, you can start with the identity

170 SENSITIVITY OF LINEAR SYSTEMS

matrix (L. = eye(n)) and then fill in the lower triangular part. The com-

mand L (i,j) = 2*rand-1 givesarandom number uniformly distributed
in [-1,1]. Calculate the norm of L~? for several such matrices with n = 40,
80, and 160.

(b) Now generate the LU factors of random n x n matrices by

A = randn(n);
[L,U,P] = 1lu(a);

MATLAB’s 1u command does Gaussian elimination with partial pivoting.
This way of using it produces a truly unit lower-triangular matrix L; the row
interchanges are incorporated into the permutation matrix P. Calculate || L~||
for several matrices generated in this way with » = 40, 80, and 160. Contrast
your results with those of part (a).

(c) Extend your code from part (b) so that it computes not only || L™! || but also
[|M~1]|, where M is generated from L by reversing the signs of the pivots:
M=2I-1L.

a

Exercise 2.7.28 Show that if L € R™*" and U € R™*" are full lower and upper triangular,
respectively, the flop count for computing the product LU is §n3. a

Exercise 2.7.29 Here we prove the backward stability of Cholesky’s method in detail. Let A
be a positive definite matrix, and let R denote its Cholesky factor computed by some
variant of Cholesky’s method in floating-point arithmetic. Assume that square roots
are calculated accurately: fi(y/5) = /s (1 + ¢€), where | €| < u.

(a) Using the proof of Theorem 2.7.13 as a model, prove that A + E = RTR,
where

|E| < 2nu | B[|R| +0@2)
and

.2
NE|lp < 2nul| R|[p + O(u?).

(b) The trace of a matrix B € R™™" is tr(B) = Y., b;;. Use the Cauchy-

i=1
Schwarz inequality to prove that |tr(B)| < v/n || B||5. (Notice that equality
is attained when B = I. More commonly |tr(B) | ~ || B||z.)
o .
(c) Prove that if A+ E = RTR, then || R||; = (A + E) = tr(A) + u(E).
(This holds regardless of whether or not R is triangular.) Thus ||R|]2 <

V(I Alle + I Ellp)-

(d) Substituting this last inequality into the result of part (a), show that

IE |l < 20°u(|Allp + | Ellg) + O(u?)

SCALING 171

and, if 2n3/2y < 1,

2n3/2y
_—T/%”A“F"'O(uz)'

1Bl < =
For realistic values of n and u we generally have 2n3/2u < 1, so the denom-
inator in this expression is about 1. (Consider, e.g., the huge value n = 10°
and IEEE double precision’s u ~ 10~19.) Furthermore, the factor 2n%/2 in the
numerator is based on a pessimistic worst-case analysis and can be ignored.
Thus we have, in practice,

I Ellp = Cull Allp,

where C is a modest multiple of 1, not n®/2. Thus Cholesky’s method for
positive definite matrices is stable.

]

2.8 SCALING

In a linear system Ax = b, any equation can be multiplied by any nonzero constant
without changing the solution of the system. Such an operation is called a row scaling
operation. A similar operation can be applied to a column of A. In contrast to row
scaling operations, column scaling operations do change the solution.

Exercise 2.8.1 Show that if the nonsingular linear system Az = b is altered by multiplication
of its jth column by ¢ # 0, then the solution is altered only in the jth component,
which is multiplied by 1/c. O

Scaling operations can be viewed as changes of measurement units. suppose the
entries of the jth column of A are masses expressed in grams, and x; is an acceleration
measured in meters/sec?. Multiplication of the jth column by 1/1000 is the same
as changing the units of its entries from grams to kilograms. At the same time z; is
multiplied by 1000, which is the same as changing its units from meters/second? to
millimeters/second?.

A discussion of scaling operations is made necessary by the fact that these op-
erations affect the numerical properties of the system. This discussion has been
placed near the end of the chapter because in most cases rescaling is unnecessary and
undesirable; usually an appropriate scaling is determined by the physical units of the
problem. Consider for example the electrical circuit problem in Example 1.2.6. In
the linear system derived there, all entries of the coefficient matrix have the same
units (1/ohm), all components of the solution have the same units (volts), and all
components of the right-hand side have the same units (amperes). One could rescale
this system so that, for example, one of the unknowns is expressed in millivolts while
the others remain in volts, but this should not be done without a good reason. In most
cases it is best not to rescale.

172 SENSITIVITY OF LINEAR SYSTEMS

Let us look at some examples that illustrate some of the effects of scaling.

Example 2.8.2 The first example shows that a small pivot cannot be “cured” by
multiplying its row by a large number. Consider the system

2.000 1231. 2471 Ty 3704.
1.196 3.165 2.543 z2 | = | 6.904 |,
1.475 4.271 2.142 T3 7.888

which was obtained from the system (2.6.10) of Example 2.6.9 by multiplying the
first row by 1000. We used (2.6.10) to illustrate the damaging effects of using a small
number as a pivot. Now that the first row has been multiplied by 1000, the (1,1)
entry is no longer small. It is now the largest entry in the first column. Let us see
what happens when it is used as a pivot.

Using four-digit decimal arithmetic, the multipliers for the first step are

1.196 1.475
= =, d I3 = —— =.7375.
2= 50p 080 and la = 5ag = 1315
Comparing these with (2.6.11), we see that they are 1000 times smaller than before.

In step 1 the (2, 2) entry is altered as follows:
3.165 — (.5980)(1231.) = 3.165 — 736.1 = —732.9.

Comparing this with (2.6.12), we see that in spite of the smaller pivot, the outcome
is the same as before. This time the number 3.165 is swamped by the large entry
1231. Notice that this computation is essentially identical with (2.6.12). The result is
exactly the same, including the roundoff errors. You can check that when the (2, 3),
(3,2), and (3, 3) entries are modified, swamping occurs just as before, and indeed
the computations are essentially the same as before and yield exactly the same result.
Thus, after the first step, the modified coefficient matrix is

2.000 1231. 2471,

5980 (—732.9 -—1475.

7375 | —903.6 —1820.
The submatrix for the second step is

—732.9 -—1475.
—-903.6 -1820. |’

which is exactly the same as before. If we continue the computation, we will have the
same disastrous outcome. This time swamping occurred not because large multiples
of the first row were subtracted from the other rows, but because the first row itself is
large.

How could this disaster have been predicted? Looking at the coefficient matrix,
we can see that it is ill conditioned: the rows (and the columns) are out of scale.
It is interesting that we have two different explanations for the same disaster. With

SCALING 173

the original system we blamed a small pivot; with the rescaled system we blame ill
conditioning. o

This example illustrated an interesting theorem of F. L. Bauer. Suppose we solve
the system Az = b by Gaussian elimination, using some specified sequence of row
and column interchanges, on a computer that uses base 3 floating-point arithmetic.
If the system is then rescaled by multiplying the rows and columns by powers of 8
and solved again using the same sequence of row and column interchanges, the resuit
will be exactly the same as before, including roundoff errors. All roundoff errors at
all steps are the same as before. In our present example 8 = 10; multiplying the first
row by 102 has no effect on the arithmetic. It is not hard to prove Bauer’s theorem;
you might like to do so as an exercise or at least convince yourself that it is true. The
examples that follow should help.

Bauer’s theorem has an interesting consequence. If the scaling factors are always
chosen to be powers of 3, then the only way rescaling affects the numerical properties
of Gaussian elimination is by changing the choices of pivot. If scaling factors that
are not powers of § are used, there will be additional roundoff errors associated with
the rescaling, but it remains true that the principal effect of rescaling is to alter the
pivot choices.

Example 2.8.3 Let us solve the system

003 217 | [z] _ [437
[277 138] [s] = [553 } 84

using three-digit decimal floating-point arithmetic without row or column inter-
changes. The exact solution is z = [1, 2]7. The multiplier is lz; = .277/.003 =
92.3, and ugz = .138 — (92.3)(.217) = .138 — 20.0 = —19.9, so the computed LU

decomposition is
1 0 .003 217
923 1 0 =199 |’

The forward substitution gives y; = .437 and y» = .553 — (92.3)(.437) = .553 —
40.3 = —39.7. Finally the back substitution gives z = (—39.7}/(-19.9) = 1.99
and z; = 437 — (.217)(1.99)]/(.003) = (.437 — .432)/(.003) = (.005)/(.003) =
1.67. Thus the computed solution is # = [1.67, 1.99]7, whose first component is
inaccurate. o

Exercise 2.8.5

(a) Calculate k., (A), where A is the coefficient matrix of (2.8.4). Observe that A
is well conditioned.

(b) Perform Gaussian elimination on (2.8.4) with the rows interchanged, using
three-digit decimal floating-point arithmetic, and note that an accurate solution
is obtained. (Remember to round each intermediate result to three decimal
places before using it in the next calculation.)

174 SENSITIVITY OF LINEAR SYSTEMS

Example 2.8.6 Now let us solve
300 21.7 Ty | _ | 43.7
{ 277 138] [T2] - [553 } ’ (2.8.7)
which was obtained by multiplying the first row of (2.8.4) by 102. Now the (1,1)
entry is the largest entry in the first column. Again we use three-digit decimal
arithmetic and no row or column interchanges. By Bauer’s theorem the outcome
should be the same as in Example 2.8.3. Let us check that it is. The multiplier is

o1 = .277/.300 = .923, and uqz = .138 — (.923)(21.7) = .138 — 20.0 = —19.9,
so the computed LU decomposition is

1 0 300 217

923 1 0 -199 |°
The forward substitution gives y; = 43.7 and yo = .553 — (.923)(43.7) = .553 —
40.3 = —39.7. Finally the back substitution yields zo = (—39.7)/(—19.9) = 1.99
and z; = 43.7 — (21.7)(1.99)]/(.300) = (43.7 — 43.2)/(.300) = (.500)/(.300) =

1.67. Thus the computed solution is again # = [1.67, 1.99]7. All intermediate
results are identical to those in Example 2.8.3, except for powers of 10. O

Exercise 2.8.8

(a) Calculate kxo(A), where A is the coefficient matrix of (2.8.7). A is ill
conditioned (relative to three-digit decimal arithmetic) because its rows (and
columns) are out of scale.

(b) Perform Gaussian elimination on (2.8.7) with the rows interchanged, using
three-digit decimal arithmetic. Note that, as guaranteed by Bauer’s theorem,
the computations and outcome are identical to those in part (b) of Exercise 2.8.5.
Thus an ill-conditioned coefficient matrix does not absolutely guarantee an
inaccurate result. (However, if the partial-pivoting strategy had been used, the
row interchange would not have been made, and the outcome would have been
bad.)

O
Exercise 2.8.9 Solve (2.8.7) by Gaussian elimination with the columns interchanged, using

three-digit decimal arithmetic. This is the complete pivoting strategy. Note that a
good result is obtained. 0

Example 2.8.10 Now let us solve

300 .217 e | [437
[277 00138 } [T2 } - [553] ’ (2.8.11)

which was obtained from (2.8.7) by multiplying the second column by 1/100. The
exact solution is therefore x = [1, 200]7. The (1,1) entry is now the largest

COMPONENTWISE SENSITIVITY ANALYSIS 175

entry in the matrix. Again we use three-digit decimal arithmetic and no row or
column interchanges (which is the choice that both the partial and complete pivoting
strategies would make). By Bauer’s theorem the outcome should be the same as
in Examples 2.8.3 and 2.8.6. The multiplier is ly; = .277/.300 = .923, and
ugz = .00138 — (.923)(.217) = .00138 — .200 = —.199, so the computed LU

decomposition is
1 0 300 217
923 1 0 -199 |°

The forward substitution gives y; = 43.7 and yo = .553 — (.923)(43.7) = .553 —
40.3 = —39.7. Finally the back substitution yields 2 = (—39.7)/(—.199) = 199.,
and z1 = 43.7 — (.217)(199.)]/(.300) = (43.7 — 43.2)/(.300) = (.500)/(.300) =
1.67. Thus the computed solution is £ = [1.67, 199.]7. All computations were
identical to those in Examples 2.8.3 and 2.8.6.

Although the computed solution £ = [1.67, 199.]7 has an inaccurate first com-
ponent, it should not necessarily be viewed as a bad result. The inaccurate entry
is much smaller than the accurate one, and in fact ||z || . /|| z]|, = -005, where
dx = & — z. This is an excellent outcome for three-digit decimal arithmetic. The
small value of || 6z || /|| z ||, is guaranteed by the well-conditioned coefficient ma-
trix, together with the fact that the computed L and U do not have large entries (cf.
Theorems 2.7.14 and 2.3.6).

It is easy to imagine situations in which the computed result & = [1.67 199.]7 is
acceptable. Suppose for example that z; and x, represent voltages expressed in the
same units. If all that matters is the voltage difference, then the result is okay, since
the computed difference &3 — &3 = 197.33 differs from the correct difference 199
by only about one percent. O

Exercise 2.8.12
(a) Calculate ko, (A), where A is the coefficient matrix of (2.8.11).

(b) Perform Gaussian elimination on (2.8.11) with the rows interchanged, using
three-digit decimal arithmetic.

(c) Perform Gaussian elimination on (2.8.11) with the columns interchanged, using
three-digit decimal arithmetic.

a

2.9 COMPONENTWISE SENSITIVITY ANALYSIS

In this chapter we have taken the oldest and simplest approach to sensitivity analysis,
in which everything is measured by norms. It is called normwise sensitivity analysis,
and it is accompanied by normwise backward error analysis. This style of error
analysis has been very successful, but there are some situations in which a different
type of analysis, componentwise sensitivity analysis, is more appropriate. In the

176 SENSITIVITY OF LINEAR SYSTEMS

normwise analysis, 64 is considered a small perturbation of A if ||6A|}/|| A| is
small. This criterion does not force all of the ratios |da;;|/|as;|, which are the
perturbations of the components, to be small.

Example 2.9.1 Suppose

[104 2.35
T 426x10°° 6.32

Then

A

-5 —6
] and 5A=[1.32x10 5.46 x 10]

1.02x107% 829 x 10~

1.446 x 10~° 6.32000829

We have ||6A]| /|| 4|, < 1073, but this does not force | dasq |/|az1 | to be small.
Obviously this can happen to any entry for which |a;; | < || A]|. a

A+ 6A= { 1.0400132 2.35000546] .

In componentwise sensitivity analysis, perturbations are considered small only if
the perturbation in each component is small relative to that component, that is,
max ——l day
v |aij
is small. Since we often encounter matrices with zero entries, we prefer the following
reformulation, in which a;; does not appear in the denominator: The perturbation
d A is componentwise e-small with respect to A if there is a positive € < 1 such that

|6as; | < €laij| fori,j=1,...,n. (29.2)

Notice that under this condition, if a;; = 0, then éa;; = 0. Thus sparse matrices stay
sparse and sparsity patterns are preserved under perturbations of this type.

Recall the following notation, which we introduced in Section 2.7. If B is a matrix
(or vector) with (%, j) entry b;;, then | B | is the matrix with the same dimensions whose
(z,7) entry is | b;;|. We write | B| < |C'| to mean that | b;;| < |¢;; | for all ¢ and j.
With these notational conventions we can rewrite the condition (2.9.2) as

|6A| < € Al (2.9.3)

In the componentwise sensitivity analysis we can ask the same sort of questions as
we do in the normwise analysis. For example, if Az = band (A +8A4)(z+dz) = b,
what is the largest dz can be relative to £? Before considering this and related
questions, we pause to establish some basic facts about the matrix absolute value
notation and matrix inequalities.

Exercise 2.9.4
(a) Show that if A = BC, then [A| < |B||C]. (This is a matrix inequality.) In
particular, | Az | < |A]|z].

(b) (Review) Show thatif y = |z|, then||y||, = |lz|l -

COMPONENTWISE SENSITIVITY ANALYSIS 177

If A € R™*™ is nonsingular, we can build various other n x n matrices from A, for
example, |A|, A71,|A7!|,and K = |A~!| | A|. This last one appears in various
error bounds, as we shall see, and we use it to define a new type of condition number,
the Skeel condition number of A:

skeel(4) = [| Kloo =l A7} [A] llo-

Now we are ready to prove some theorems. The first is the componentwise
analogue of Theorem 2.2.4

Theorem 2.9.5 Let A € R™*™ be nonsingular, let b € R™ be nonzero, and let x be
the unique solution of Ax = b. Suppose & = x + bz is the solution of AT = b+ 6b,

where
16b] < elb].
Then
|6z| < €| A7 | A |z] (2.9.6)
and
I:—lég#i’—‘i < e skeel(A4). (29.7)

Exercise 2.9.8 Prove Theorem 2.9.5 as follows (or do it your own way).
(a) Prove that |6z | < |A~Y||8b| and |b| < | A| |z|. Then deduce (2.9.6).

(b) Deduce (2.9.7) from (2.9.6).

Now consider this componentwise analogue of Theorems 2.3.3 and 2.3.6.

Theorem 2.9.9 Let A € R™*™ be nonsingular, let b € R™ be nonzero, and let T be
the unique solution of Az = b. Suppose & = x + 6z satisfies (A + 0 A)E = b, where

164] < e|Al
Then
|0z| <€ |ATH | Al 2] (2.9.10)
and 5
|:|;[:|°° < e skeel(A). 2.9.11)

Ife skeel(A) < 1, then also

| EA P <€ skeel(A)

. 2.9.12
[z]loo — 1— eskeel(A) ()

178 SENSITIVITY OF LINEAR SYSTEMS

Exercise 2.9.13 Prove Theorem 2.9.9 as follows (or do it your own way).

(a) Prove that 6z = —A~15AZ and |6z| < |A~!| |6A4]| |#|. Then deduce
(2.9.10).

(b) Deduce (2.9.11) from (2.9.10).

(c) Multiply (2.9.11) through by [|Z||_, apply the triangle inequality to break
2|, into two parts, and deduce (2.9.12), remembering to point out where
you are using the added hypothesis € skeel(A) < 1.

Componentwise Backward Error Analysis

Componentwise sensitivity analysis can be combined with componentwise backward
stability analysis, whenever the latter is successful. One example of componentwise
backward stability that we have already encountered is the forward substitution
algorithm for solving triangular systems. Theorem 2.7.2 states that if we solve the
triangular system Gy = bby forward substitution using floating-point arithmetic, then
the computed solution § satisfies (G + 6G)§ = b, where |6G | < 2nu| G| + O(u?).
This is a componentwise backward stability result, since it says that each component
of 8@ is tiny relative to the corresponding component of G. As a practical matter
we have |6G| < Cu|G|, where C is a modest multiple of 1. We can now apply
Theorem 2.9.9 with ¢ = Cu, to conclude that § is accurate (in the sense that
69|/ 1% || is tiny) if the Skeel condition number skeel(G) is not too large.

[terative Refinement

Another process that yields componentwise backward stability is iterative refinement.
This is an old procedure that was originally used to improve the accuracy of solutions
to ill-conditioned systems. Let Z denote an approximation to the solution of the
system Az = b, and let 7 be the associated residual: 7 = b— AZ. The approximation
Z may have been obtained by Gaussian elimination, for example. If we could solve the
residual system Az = 7 exactly, then the vector x = £+ z would be the exact solution
of Ax = b, as you can easily check. If we did obtain £ by Gaussian elimination,
then an LU decomposition is available, so we can solve Az = 7 inexpensively. Of
course the computed solution £ is not exact. If A is somewhat ill conditioned, it may
be far from exact. Nevertheless it is not unreasonable to hope that & 4 2 will be an
improvement over . If this is the case, then perhaps we can improve the solution
even more by calculating the residual associated with £ + 2 and repeating the process.
In fact we can repeat it as many times as we wish. This gives the following iterative
refinement algorithm.

COMPONENTWISE SENSITIVITY ANALYSIS 179

Iterative Refinement Algorithm
fork=1,...,m

fb— A2

Calculate 2, an approximate solution of Az = 7.

(Use the LU decomposition that was computed previously.)

2242

if (|| 2]]/1| £ || is sufficiently small) exit (successful completion)
Set flag indicating failure.

(2.9.14)

This is called an iterative algorithm because the number of steps or iterations
to be performed is not known in advance. The iterations are terminated as soon as
the corrections become sufficiently small. Any iterative algorithm should have an
upper bound on the number of iterations it is willing to attempt before abandoning
the process as a failure. In (2.9.14) that number is denoted by m. Notice that in order
to carry out this procedure, we must save copies of A and b to use in the computation
of the residuals.

Up until about 1980 it was thought that (2.9.14) cannot hope to succeed unless
the residuals are calculated in extended-precision arithmetic. This means that if we
are using single-precision arithmetic, the step 7 < b — AZ should be done in double
precision. The reason for this is that severe cancellation occurs when AZ is subtracted
from b. The smaller # becomes, the worse the cancellation is. The objective of the
extended-precision computation is to preserve as many significant digits as possible
in the face of this cancellation.

If iterative refinement is carried out in this way and the system is not too badly
conditioned (say k(A) < 1/u), (2.9.14) actually does converge to the true solution of
Az = b. Thus iterative refinement can be used to solve the problem to full precision
(||z — #{| =~ u). There is a catch, however. The system that is solved so precisely
is the one whose coefficient matrix A and right-hand-side vector b are exactly what
is stored in the computer. Because of measurement and representation errors, the
stored A and b are mere approximations to the true data for the physical problem that
we are trying to solve. If the problem is ill conditioned, the exact solution of Az = b
can be a very unsatisfactory approximation to the solution of the problem we really
wish to solve.

Around 1980 it was realized that iterative refinement is useful even if the residuals
are not computed with extended precision arithmetic. Full precision (||z — £|| =)
cannot be attained, but some improvement in accuracy is possible. Furthermore,
iterative refinement has a good effect on the backward error. Skeel [61] showed that
if the system is not too badly conditioned and not too badly out of scale, then one
step of iterative refinement is usually enough to ensure a componentwise backward
stable solution. See [41] or [61] for details.

Componentwise backward stability means that the computed solution satisfies
(A+6A4)2 = b, where |§A| < Cu|A|, with C not too big. This can then be

180 SENSITIVITY OF LINEAR SYSTEMS

combined with Theorem 2.9.9 to get the bound

||z]
— 0 < (' y skeel(A4).
Iz,)

This is sometimes significantly better than bounds that can be obtained using the
normwise error analysis, because skeel(A) can be much smaller than k.. (A) (See
Exercise 2.9.15). The greatest advantage comes with matrices that are ill-conditioned
simply because the rows are out of scale. The Skeel condition number skeel(4) is
insensitive to row scaling, so it remains small while the normwise condition number
Koo(A) becomes large in proportion to the badness of the scaling.

There are inexpensive methods for estimating skeel(A) that work on the same
principal as condition estimators for k3 (A). See [41].

Exercise 2.9.15
(a) Show that for every nonsingular matrix A, skeel(A4) < koo (A4).

(b) Show that if D is a nonsingular diagonal matrix, then | DA| = |D||A| and
DI =D,

(c) Show that the Skeel condition number is invariant under row scaling; that is,
skeel{D A) = skeel(A) for all nonsingular diagonal matrices D.

(d) From part (a) we know that the ratio Ko (A)/skeel(A) is always at least one.
Show by example that it can be made arbitrarily large.

O
Exercise 2.9.16

(a) Prove that if A is nonsingular, A + A is singular, and |64| < €| A}, then
€ skeel(A) > 1 (cf. Theorem 2.3.1).

(b) Prove that if A is nonsingular and |64 | < €| A|, where € skeel(A) < 1, then
A + A is nonsingular.

(c) Discuss the relationship between the result in part (b) and Theorem 2.3.1. Is
one stronger than the other?

O

