OVERHEAD LINE AMPACITY

<u>Ampacity</u> = Ampere Capacity

- limitation maximal permitted operational conductor temperature; given by the conductor type and operational state
- influences climatic (ambient temperature, wind, Sun)
- other limitations: mechanics (sag), magnetic field, stability

<u>ACSR operational temperature (ACSR – Aluminium Conductor Steel</u> Reinforced; AlFe)

in accordance with ČSN EN 50341-3-19

- normal loading: 80°C
- short-term increasing during special loading (up to 150°C)
- during short-circuit: 200°C

x manufacturer requirements, optical and mechanical characteristics downgrade, sag

Overhead Line Thermal Models

Conductor heat conductivity λ high \rightarrow conductor temperature considered constant in the cross-section: T_{AV} (°C)

Conductor temperature differential equation

$$M \cdot c_{P} \frac{dT_{AV}}{dt} = P_{J} + P_{S} + P_{M} - P_{R} - P_{C} \quad (W / m)$$

M..... conductor mass (kg/m) c_P specific heat capacity (J·kg⁻¹·K⁻¹) P_J Joule losses (W/m) P_S solar radiation heat power (W/m) P_M magnetic field heating (W/m) P_R radiation cooling (W/m) P_C convective cooling (W/m) (also corona heating, evaporation cooling – usually not considered) AC resistance respecting el. and mag. influences $P_Z = P_J + P_M = R_{ac}I^2 \quad (W/m; \Omega/m, A)$

Steady state – algebraic equation

$$\frac{\mathrm{dT}_{\mathrm{AV}}}{\mathrm{dt}} = 0$$

ASCR conductors parameters

$$M = \rho_{Al} \cdot S_{Al} + \rho_{Fe} \cdot S_{Fe} \quad (kg/m; kg/m^{3}, m^{2})$$

$$c_{P} = \frac{c_{Al} \cdot \rho_{Al} \cdot S_{Al} + c_{Fe} \cdot \rho_{Fe} \cdot S_{Fe}}{\rho_{Al} \cdot S_{Al} + \rho_{Fe} \cdot S_{Fe}} \quad (J \cdot kg^{-1} \cdot K^{-1})$$

$$\rho_{Al} = 2703 \text{ kg} \cdot m^{-3}, \ \rho_{Fe} = 7780 \text{ kg} \cdot m^{-3}$$

$$c_{Al} = 897 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}, \ c_{Fe} = 477 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$$

Joule losses

$$P_{Z} = I_{P}^{2} \cdot R_{dc0} \cdot k_{ac} \left[1 + b (T_{AV} - T_{0}) \right] \quad (W / m)$$

 R_{dco} relative DC (Ω/m) for temperature T₀ T₀..... reference temperature, usually 20°C b..... resistance temperature coefficient (K⁻¹) b ≈ 4 · 10⁻³ K⁻¹ k_{ac} AC and DC resistance ratio

$$k_{ac} = R_{ac} / R_{dc} > 1$$

Solar radiation heating

$$P_{s} = a \cdot D \cdot I_{pr} \sin \omega \quad (W/m)$$

a..... solar radiation absorption coefficient (-) $a \approx 0.5 \div 1$ D..... conductor diameter (m) $I_{p\check{r}}..... \text{ direct solar radiation (W/m²)}$ solar constant $I_0 \approx 1370 \text{ W}/\text{m}^2$ $\omega...... \text{ angle between solar beams and conductor axis (°)}$ <u>Radiation cooling</u>

$$P_{R} = \sigma \cdot \epsilon \cdot \pi \cdot D \cdot \left[(T_{AV} + 273,15)^{4} - (T_{a} + 273,15)^{4} \right] \quad (W/m)$$

$$T_{a}..... ambient temperature (°C)$$

$$\sigma Stefan-Boltzmann constant$$

$$\sigma = 5,67 \cdot 10^{-8} W \cdot m^{-2} \cdot K^{-4}$$

$$\epsilon heat radiation emissivity (-), \epsilon \approx 0,5$$

Convective cooling

$$P_{\rm C} = \alpha \cdot \pi \cdot \mathbf{D} \cdot \left(\mathbf{T}_{\rm AV} - \mathbf{T}_{\rm a} \right) \quad (W / m)$$

 α convection heat-transfer coefficient

$$\alpha = k_{w} \cdot \frac{Nu \cdot \lambda}{D} \quad (W \cdot m^{-2} \cdot K^{-1})$$

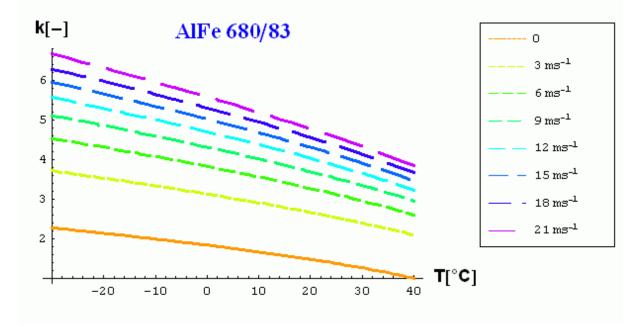
 $\begin{array}{l} \lambda & \text{ air heat conductivity } (W \cdot m^{-1} \cdot K^{-1}) \\ \text{Nu..... Nusselt number (-)} \\ & \text{free convection } Nu_V = f(Gr, Pr) \\ & \text{forced convection } Nu_N = f(Re) \\ k_w & \text{..... wind angle coefficient (-)} \\ & k_w = 1,\!194 - \sin \psi - 0,\!194 \cos 2\psi + 0,\!364 \sin 2\psi \\ & \psi & \text{..... angle between wind direction and conductor normal line} \end{array}$

Conductor bundle influence

 P_Z – each conductor 1/3 total current (losses) P_S – no changes, variable shadowing P_C – no changes, boundary layer x cm P_R – lower, partial radiation to the same temperature

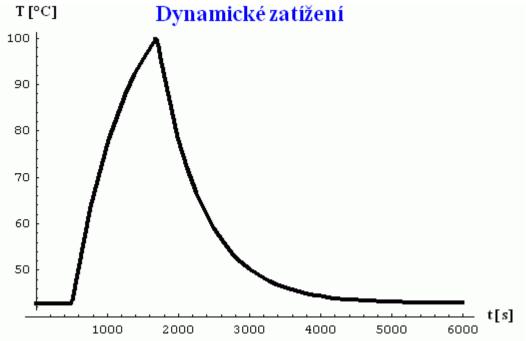
$$k_{rad} = 1 - \frac{2 \cdot \operatorname{Arctg}\left(\frac{D}{21}\right)}{\pi}$$

1 ... bundle step (m)


 \rightarrow lower cooling, lower ampacity (c. by 0,5%)

Steady states

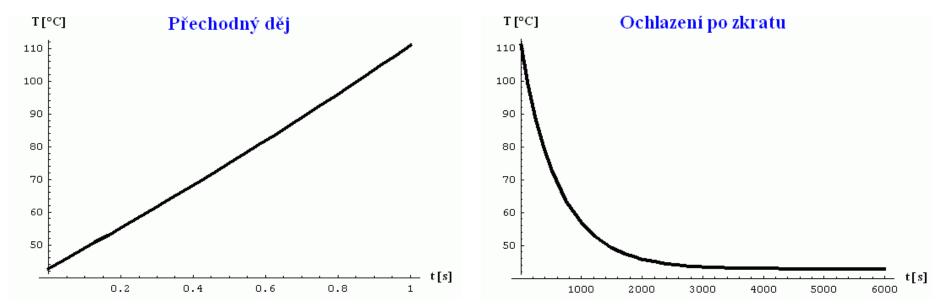
Ampacity for given conductor temperature


$$I = \sqrt{\frac{P_{R} + P_{C} - P_{S}}{k_{ac} \cdot R_{dc}}} \quad (A)$$

Steady temperature – 4th order algebraic equation Climatic parameters influence on ampacity

Dynamic states

- Changes in ES configuration, production, loading, 10x minutes, heat energy accumulation.
- Events dynamics depends on heat time constant: e.g. for 434-AL1/59-ST1A $\tau_{vod} = 16,5 \text{ min}_{.}$
- E.g.: AlFe 680/83 overloaded 20 min up to 100°C → dynamic ampacity 2292 A.



Transient events

- Lightning, short-circuit currents.
- Adiabatic condition

$$(\mathbf{P}_{S} = \mathbf{0}, \mathbf{P}_{R} = \mathbf{0}, \mathbf{P}_{C} = \mathbf{0}).$$

$$\mathbf{M} \cdot \mathbf{c}_{P} \frac{d\mathbf{T}_{AV}}{dt} = \mathbf{P}_{Z} = \mathbf{I}_{Z}^{2} \cdot \mathbf{R}_{ac0} \left[1 + \mathbf{b} \left(\mathbf{T}_{AV} - \mathbf{T}_{0} \right) \right] (W / m)$$

E.g.: AlFe 680/83, short-circuit 50 kA for 1 s

OHL ampacity

Limit factors for loading

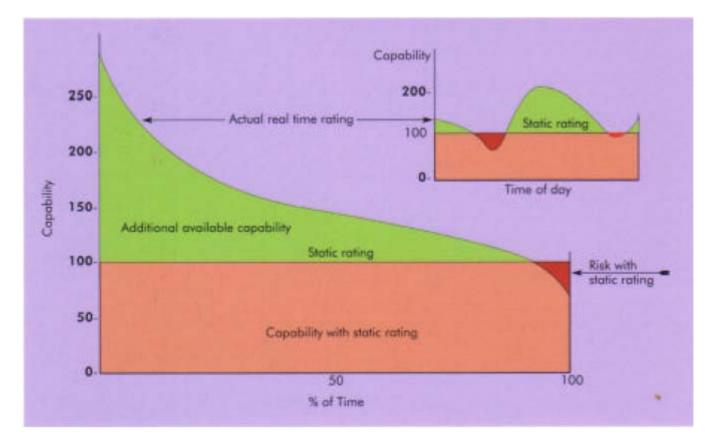
- sag
- substation equipment (CT, disconnectors)
- wire


Temperature (sag) measurement

- contact
- mechanical tension measurement (CAT-1 Nexans)
- thermovision
- sag by means of laser \rightarrow T
- phasor measurement \rightarrow average T
- mechanical auto-oscillations \rightarrow sag \rightarrow T (Ampacimon)
- longitudinal temperature by means of reflections in optical wires (*Distributed Temperature Sensing*)

Ampacimon

Valcap - NKT Cables (V444 – Nošovice - Wielopole (PL))



Loading

- static constant limits, sometimes summer x winter (protections setting)
- dynamic (dynamic line rating, real-time line rating)
 - \circ online conductor temperature measurement \rightarrow data to dispatch centre \rightarrow loading reduction
 - o online conductor temperature measurement + meteorological data
 - \rightarrow heat models for decisions
 - o offline only meteodata into models
 - o prediction systems based on meteostations network (USA)
- normal x extraordinary states decision time for dispatcher

Dynamic Line Rating

Loading control

- reconfiguration
- sources redispatch
- FACTS
- extraordinary states (consumers reducing)

Critical places and states

- power plants outlets
- international connections
- long "parallel" lines
- transit x internal loading
- renewable energy sources

Conductor dimensioning

Border conditions determining approaches

climatic parameter	operational	border values		
	conditions range	sub-critical	critical	limiting
$T_a (^{\circ}C)$	-30 až 35	30	35	40
w_{s} (m/s)	0,6 až 30	1,34	0,6	0
$I_{gm} (W/m^2)$	0 až 800	800	800	1100

Conditions in accordance with ČSN EN 50341-3-19 for determining the highest conductor design temperature:

- ambient temperature 35 °C
- wind speed 0,5 m/s with angle 45° to the conductor axis
- global solar radiation intensity 1000 W/m^2
- absorption coefficient 0,5
- emissivity coefficient 0,5

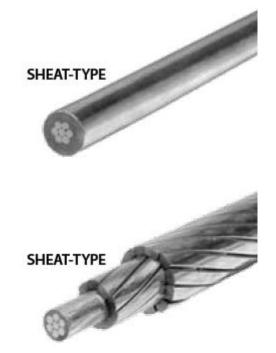
Transmission capacity increasing ("uprating")

Increasing	Method	Tool		
Current	temperature increase	higher conductor suspension point		
	temperature increase	conductor mechanical strain change		
	conductor change	compact / smooth conductors		
	conductor change	high-temperature conductors		
	special method	statistical methods		
	special method	real-time methods		
	insulation	insulators exchange / additional insul.		
	Insulation	fixing modification		
	distance to the ground	higher conductor suspension point		
	distance to the ground	conductor mechanical strain change		
	phase-to-phase distance	double line change to a simple one		
	phase-to-phase distance	new tower head		

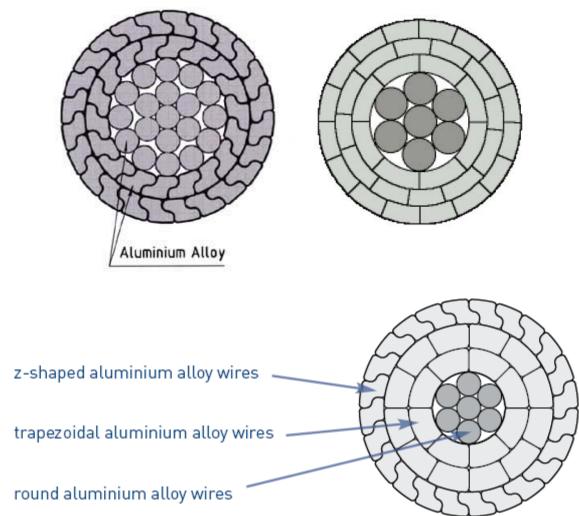
OHL conductors

Usually more materials, strength + conductivity.

Classical conductors

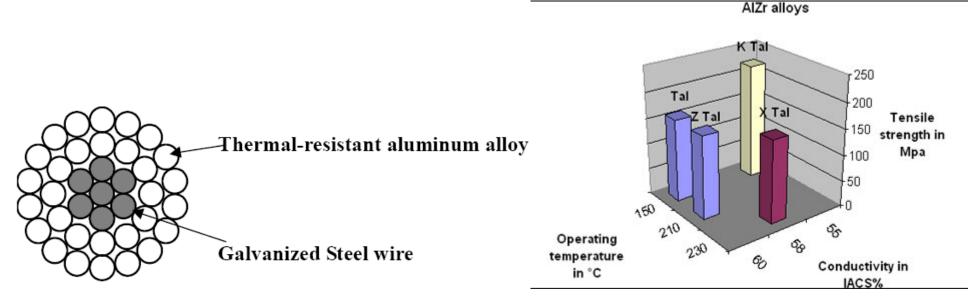

- ACSR (Aluminium Conductor Steel Reinforced)
- AAAC (All-Aluminium Alloy Conductor)

 stronger than ACSR, more resistant against corrosion, more resistant surface
- ACAR (Aluminium Conductor Alloy Reinforced) o higher ampacity and mech. strength for the same weight as ACSR
- AACSR (Aluminium Alloy Conductor Steel Reinforced) o for more severe climate, river crossings,...
- AAC (All Aluminium Conductor) o high ampacity, for shorter spans



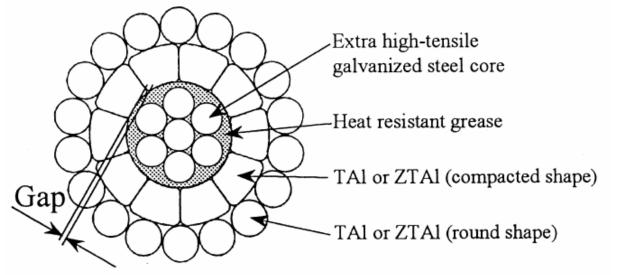
<u>Compact conductors</u> – "without air gaps", extremely "sheath-type" – full material;

- more conductive x more heavy, smaller diameter enough, lower power losses, higher endurance against wind (conductors galloping reducing), corrosion reducing (lower grease losses), frost reducing
- sheath-type smaller diameters, shorter spans



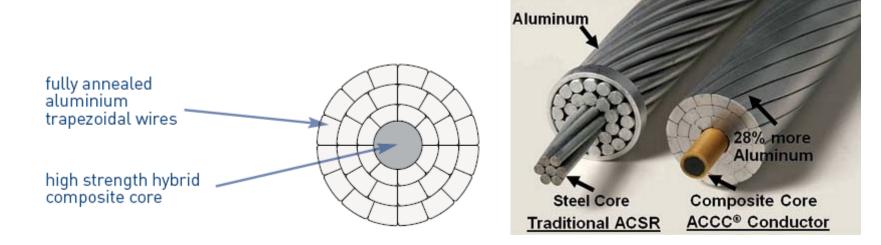
- compact profiles: ACSR/TW, AERO-Z

High-temperature conductors

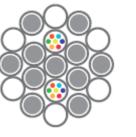

 aluminium and zirconium alloy with strength up to higher temperatures (TAI, ZTAI, XTAI) → e.g. TACSR
 Permitted steady temperature TAI: 150°C, ZTAI: 210°C, XTAI: 230°C

- strength given by both materials up to a knee-point, further only core, $T_{kn} \approx 100^{\circ} C$
- low core expansion: Invar (Fe + Ni), 1/3 against steel, c. $3 \cdot 10^{-6}$ K⁻¹, small sag x lower strength (for shorter spans) \rightarrow e.g. TACIR

conductors with a gap between Fe and Al: GZTACSR (Gap-type ZT-Aluminium Conductor Steel Reinforced) – only the core stressed by tensile, i.e. core expansion

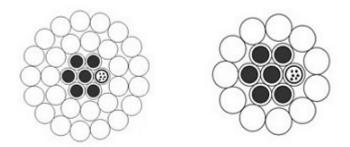

 (11,5.10⁻⁶ K⁻¹ for Fe x 18.10⁻⁶ K⁻¹ u AlFe)

 composite materials: ACFR (Aluminium Conductor Carbon Fibre Reinforced), ACCC (Aluminium Conductor Composite Core)

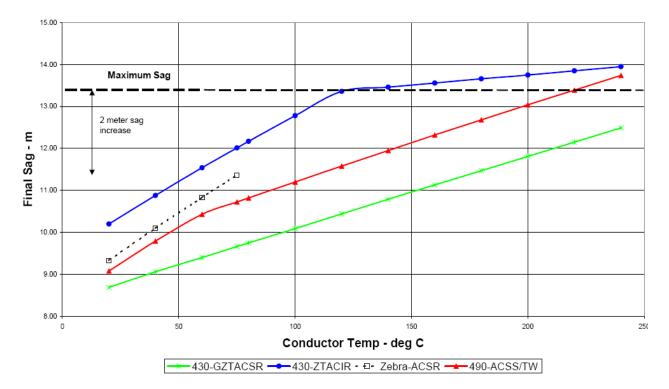

 composite of carbon and glass fibres, high strength, small expansion, without corrosion, long spans (up to 2,5 km), light, more Al, up to 150°C

- ACSS (Aluminium Conductor Steel Supported) core covered by Zn-Al against corrosion, it carries the full strain, coat from annealed aluminium, up to 200°C
- optical fibres: OPGW (Optical Ground Wire) most often in ground wires, communication

Konstrukce OPGW se slaněnou trubičkou



Konstrukce OPGW se středovou trubičkou



Most often used aluminium alloys characteristics

Type of aluminium		Conductivity (%IACS)	Min. tensile	Allowed operating temperature (°C)		
			strength (MPa)	Steady- state	Emergency	
Hard drawn	1350- H19	61,2	159 - 200	90	120	
Thermal resistant	TAL	60	159 – 176	150	180	
Extra thermal resistant	ZTAL	60	159 – 176	210	240	
Fully annealed	1350-0	63	59 – 97	200 – 250	250	

Most often used steels characteristics

	Min. tensile strength (MPa)	Modulus of elasticity (GPa)	Coef. of linear expansion (x10 ⁻⁶)
Galvanized steel HS	1230 - 1320	206	11,5
Galvanized steel EHS	1765		
Al clad steel	1103 - 1344	162	13,0
20,3 % I.A.C.S			
Zinc – 5 % Al			
Mischmetal		206 (initial)	11,5
Standart	1380 - 1450	186 (final)	
HS	1520 - 1620		
Galv. Invar Alloy	1030 - 1080	162	2,8-3,6

Other core materials characteristics

Material	Density	σ _R (//)	Specific strength (//)	Elastic modulus	Thermal expansion (//)	T _{MAX}
	kg/dm³	MPa	MPa*dm³/kg	GPa	10 ⁻⁶ /°C	°C
Steel	7,8	1500	192 (reference)	205	11,5	>300
Al alloy	2,7	325	120 (-37%)	65	23	80
Metal matrix Composite	3,4	1600	470 (+144%)	240	7	300
Carbon Fiber Composite	1,7÷1,8	2200	1250 <i>(+550%)</i>	150	<1	200