ENVIRONMENTAL IMPACTS OF OVERHEAD LINES

Impacts:

- property of the land
- esthetic (area view)
- ecological (flora, fauna, water)
- technical (EMC, disturbances)
- health
 - o electrical field
 - o magnetic field
 - o noise

x efforts to increase transmission capacity

<u>Safety areas for overhead lines =</u>

space defined by vertical planes on both sides of the line within a horizontal distance measured perpendicular to the lines. Distance is from the outer line conductors on both sides. For conductors without insulation:

- a) U from 1 kV up to 35 kV 7 m,
- b) U from 35 kV up to 110 kV 12 m,
- c) U from 110 kV up to 220 kV 15 m,
- d) U from 220 kV up to 400 kV 20 m,
- e) U more than 400 kV 30 m.

Impact of el-mag. field generated by overhead line

Impact of low frequency field (50, 60 Hz) on animals and human beings has been researched for last 50 years.

Many studies (impact on molecular mechanisms, genetical changes, diseases) – statistical problems, not clear results (low correlation).

- el. field causes charges and currents at surface, living tissue reduces el. field (by 8 orders), the inside level lower than in cells
- mag. field –induced el. field, circulating currents
- field energy absorbed by living matter

Even research results are not clear standards for lines impact exist:

• ENV 50166-1: Human exposure to electromagnetic field; Low frequency (0 Hz to 10 kHz). CENELEC 1995

0 50 Hz limit values, public

- $E_{max} = 10 kV/m$
- $B_{max} = 640 \ \mu T$

o 50 Hz limit values, employees

- $E_{max} = 30 \text{ kV}/\text{m}$
- $\bullet B_{max} = 1600 \ \mu T$
- Directive ICNIRP (International Commission on Non-Ionizing Radiation Protection) from 1999, authorized by WHO

 50 Hz, permanent people exposition
 public

•
$$E_{max} = 5 kV/m$$

$$B_{max} = 100 \ \mu T$$

o employees

•
$$E_{max} = 10 kV/m$$

$$\mathbf{B}_{\max} = 500 \ \mu T$$

- CR: Government decree 1/2008 Sb. about health protection against non-ionizing radiation
 - reference values E_{max}, B_{max} (measurable) for 50 Hz they ensure not-exceeding the highest admissible values of induced current densities in a body J_{max}
 public
 - $J_{\text{max}} = 2 \text{ mA}/\text{m}^2$
 - $E_{max} = 5 kV/m$
 - $\bullet B_{max} = 100 \ \mu T$

o empolyees

- J_{max} = $10 \text{ mA} / \text{m}^2$
- $E_{max} = 10 kV/m$
- $B_{max} = 500 \ \mu T$

o if exceeding the reference values E, B, measurement on human body models are done if maximal J values are not exceeded

• ČSN 332040 (1993) – Protection against impacts of electromagnetic field of 50 Hz in an impact zone of electrical system equipment o workers with electrotechnical qualification at control routes and in working place: $E_{max} = 15 \text{ kV/m}$

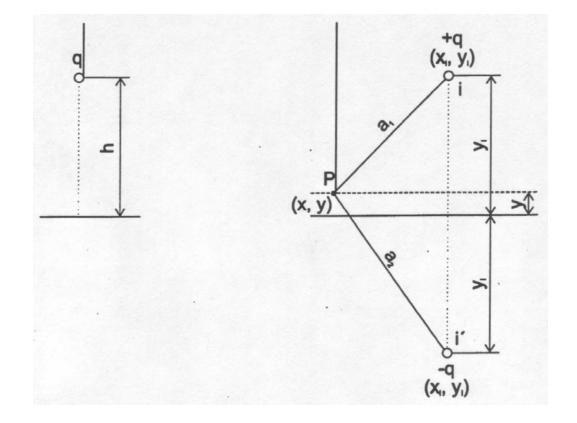
$$_{O} E_{max} = 15 \div 20 \text{ kV} / \text{m} \rightarrow 1,5 \text{ hour/day}$$

$$_{O} E_{max} = 20 \div 25 \text{ kV} / \text{m} \rightarrow 0,5 \text{ hour/day}$$

o zone of power engineering equipment impact with public access

•
$$E_{max} = 10 kV/m$$

 $\bullet B_{max} = 500 \ \mu T$


o impact zone of electrical equipment impact is area where

- E > 1 kV / m at 1,8 m high
- $B > 100 \mu T$ at 1,0 m high

Electrical field calculation

Configuration:

- line conductors with linear electrical charge density q (C/m)
- ground is equipotential surface $(U = 0) \rightarrow \text{mirror method}$

Potential in any point $P_{(x,y)}$ above the ground

$$\varphi_{\rm P} = \frac{q}{2\pi\varepsilon_0} \ln \frac{a_2}{a_1} \quad (\rm V)$$

 ϵ_0 permittivity of vacuum

 $\varepsilon_0 = 8,854 \cdot 10^{-12} \text{ F/m} \approx 10^{-9} / 36\pi \text{ F/m}$

$$\phi_{\rm P} = \frac{q_{\rm i}}{4\pi\epsilon_0} \ln \frac{(x - x_{\rm i})^2 + (y - y_{\rm i})^2}{(x - x_{\rm i})^2 + (y + y_{\rm i})^2}$$

We know voltage, one conductor is solved directly:

$$u_i = \frac{q_i}{2\pi\varepsilon_0} \ln \frac{2y_i}{r_i}$$

Multi conductor system (ground wires are included, $u_z = 0$) – method of capacity calculation is used.

 $(\mathbf{u}) = (\delta)(\mathbf{q})$ $(\mathbf{q}) = (\delta)^{-1}(\mathbf{u})$

Potential coefficient

$$\delta_{i,i} = \frac{1}{2\pi\varepsilon_0} \ln \frac{2y_i}{r_i}$$
$$\delta_{i,j} = \frac{1}{2\pi\varepsilon_0} \ln \frac{\sqrt{4y_i y_j + d_{i,j}^2}}{d_{i,j}}$$

Total potential in the point P

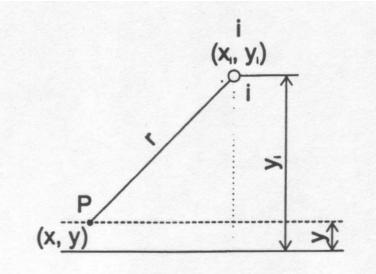
$$\varphi_{\rm P} = \sum_{i=1}^{n} \frac{q_i}{2\pi\varepsilon_0} \ln \frac{a_{2i}}{a_{1i}} \quad (V)$$

Intensity of electrical field:

$$\vec{E} = -\text{grad } \phi \quad (V/m)$$
$$E_x = -\frac{\partial \phi_P}{\partial x}, \quad E_y = -\frac{\partial \phi_P}{\partial y}$$
$$E = \sqrt{E_x^2 + E_y^2}, \quad \vec{E} = E_x + jE_y$$

$$E_{x\Sigma} = \sum_{i=1}^{n} E_{xi}$$
, $E_{y\Sigma} = \sum_{i=1}^{n} E_{yi}$

Voltage, charge and electrical field are changing in time (also phase shifts!)


$$\begin{pmatrix} q(t) \end{pmatrix} = \left(\delta \right)^{-1} \left(u(t) \right) \\ \left(\hat{Q} \right) = \left(\delta \right)^{-1} \left(\hat{U} \right)$$

Magnetic field calculation

Configuration:

- linear conductors are loaded by current i (A)
- currents in ground wires are calculated by means of impedance matrix

$$\begin{pmatrix} \Delta \hat{U}_{v} \\ 0 \end{pmatrix} = \begin{pmatrix} \hat{Z}_{vv} & \hat{Z}_{vz} \\ \hat{Z}_{zv} & \hat{Z}_{zz} \end{pmatrix} \begin{pmatrix} \hat{I}_{v} \\ \hat{I}_{z} \end{pmatrix}$$

Ampere's law

$$\oint \vec{H} \cdot d\vec{1} = I$$

Magnetic induction in the point $P_{(x,y)}$ outside conductor

$$B = \frac{\mu_0 i}{2\pi r} \quad (T)$$

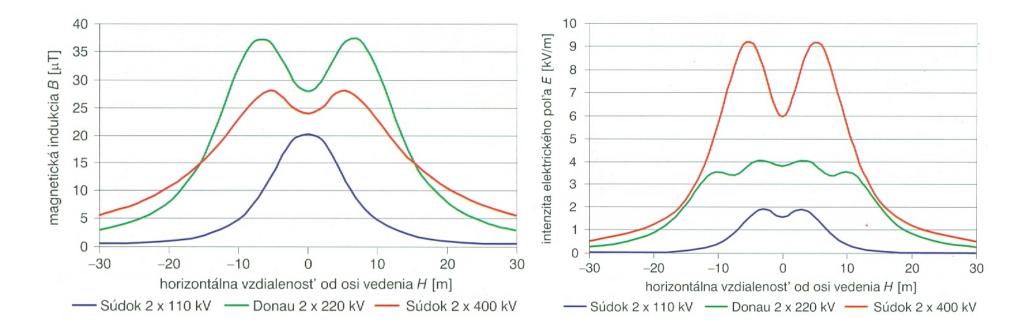
 μ_0 permeability of vacuum $\mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}$

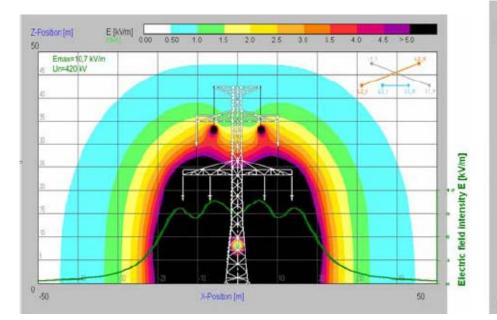
Components

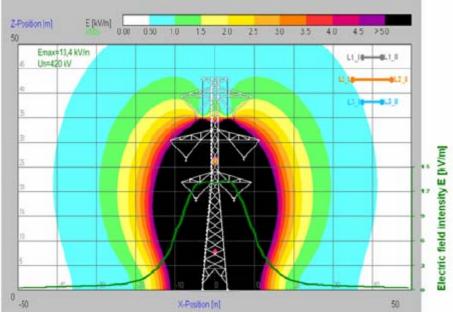
$$B_{x} = \pm B \cdot \sin \left(\arctan \left| \frac{y_{i} - y}{x_{i} - x} \right| \right)$$
$$B_{y} = \pm B \cdot \cos \left(\arctan \left| \frac{y_{i} - y}{x_{i} - x} \right| \right)$$

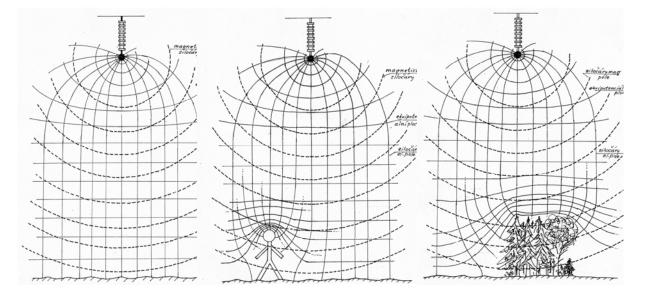
Total values in the point P

$$B_{x\Sigma} = \sum_{i=1}^{n} B_{xi}, \quad B_{y\Sigma} = \sum_{i=1}^{n} B_{yi}$$
$$B_{\Sigma} = \sqrt{B_{x\Sigma}^{2} + B_{y\Sigma}^{2}}, \quad \vec{B}_{\Sigma} = B_{x\Sigma} + jB_{y\Sigma}$$

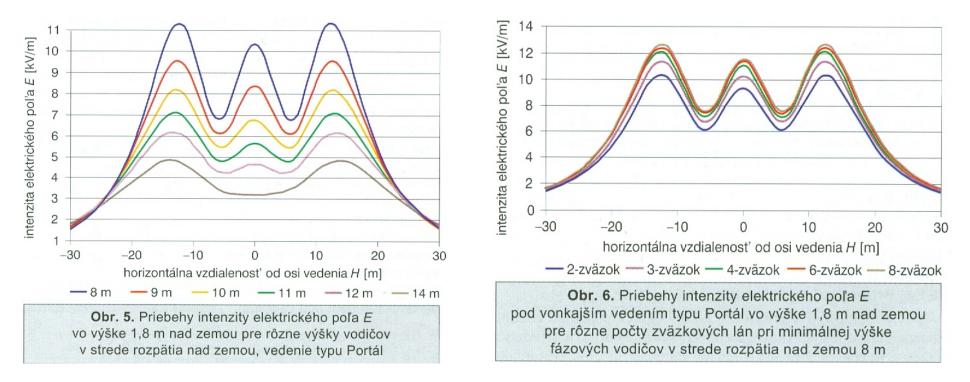

Current and magnetic field are changing in time.

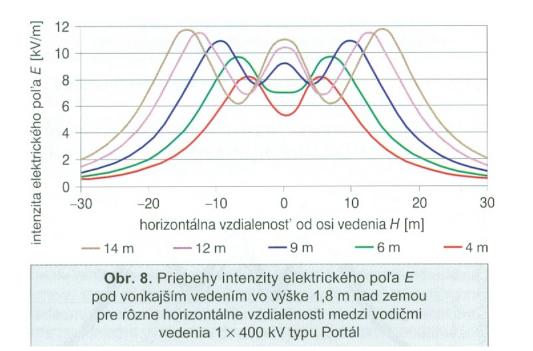

$$B(t) = \frac{\mu_0 i(t)}{2\pi r} \quad (T)$$

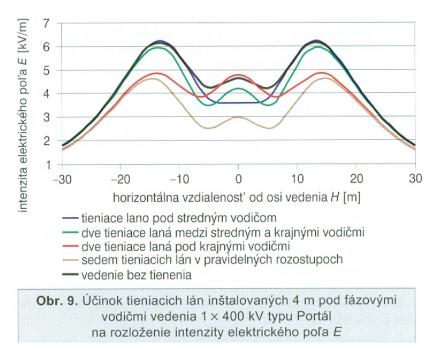

In term of el-mag. field impact there are 2 tasks:


- Maximum value at given area (cross-section under the line)
- Optimization of the line to minimize field characteristics

Barrel 2 x 110 kV, 650 A, conductor min. 6 m above the ground Donau 2 x 220 kV, 1000 A, conductor min. 7 m above the ground Barrel 2 x 400 kV, 1000 A, conductor min. 8 m above the ground

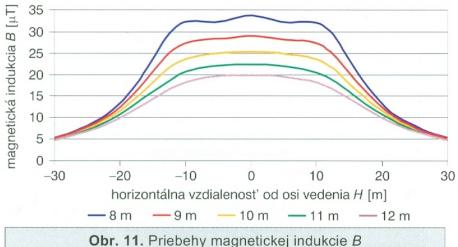


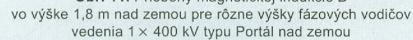


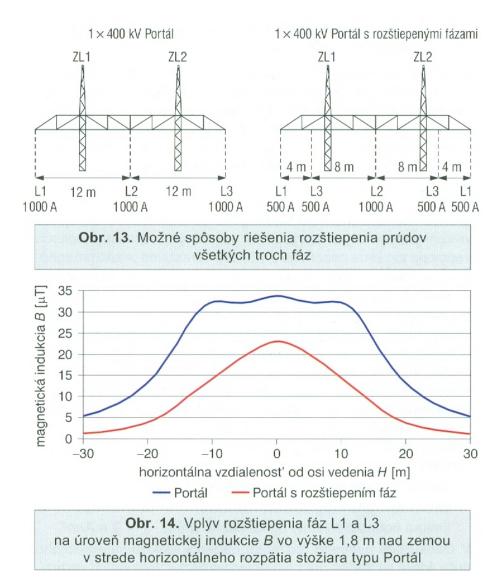


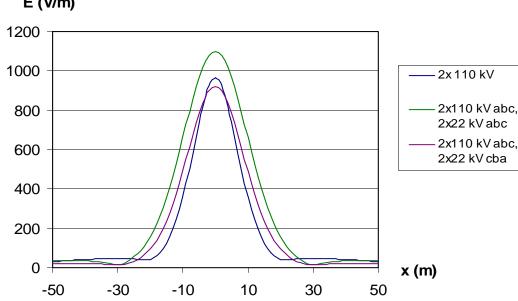
Electrical field control

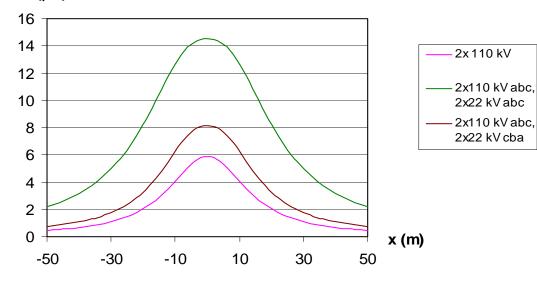
- increase of phase conductors distance from the ground *x mech. tension*
- voltage level decrease limits up to ± 5 %, ± 10 % *x power losses*
- number of bundle conductors and bundle step smaller step *x corona*
- conductors distance (line compactness) *x safety*
- phase sequence at multiple lines
- shielding wires under the line also buildings or vegetation

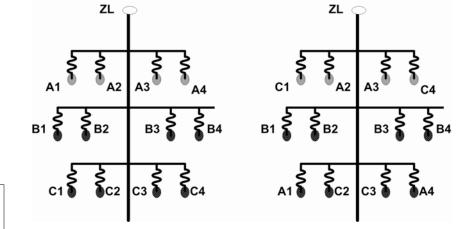


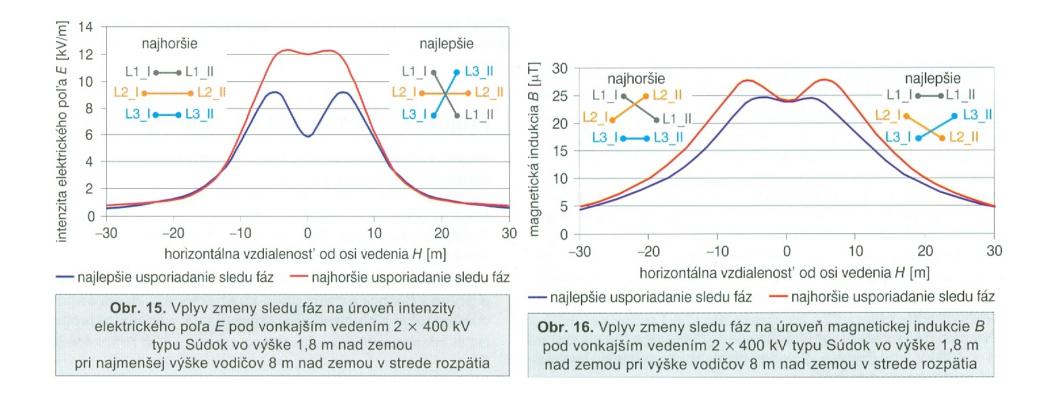



Magnetic field control


- increase of phase conductors distance from the ground
- current decrease
- conductors distance (line compactness) *x safety*
- coupling conductors, split phase
- shielding wires with induced currents
- phase sequence at multiple lines







Β (μΤ)

E (V/m)

Overhead line audible noise

Excessive noise – influence on neural and cardiovascular systems, deteriorate learning ability, memory, communication,...

Legislation

- recommendation of WHO 55dB for outdoor areas at day time
- Day time 6:00 22:00, night time.
- Overhead lines = other stationary sources of noise
 - For outdoor area:

 $L_{Aday} = L_{Anight} = 50 \text{ dB}$ o For protected outdoor building areas:

 $L_{Aden} = 50 \text{ dB}, L_{Anoc} = 40 \text{ dB}$

Noise level from sources

Equivalent sound level (A)

$$L_{Aeq} = 10 \log \frac{1}{T} \int_{t_1}^{t_2} \left(\frac{p_A(t)}{p_0} \right)^2 dt \quad (dB)$$

- $p_A(t)$ (Pa) is continues RMS value of acoustic pressure time function scaled to frequency correction curve A (corresponding to human perception)
- T (s) integration period, T = $t_2 t_1$ p₀...... referential acoustic pressure (audibility limit for average person) p₀ = 2.10⁻⁵ Pa

Sound intensity I (it can be added linearly from more sources)

$$I = \frac{P}{S} (W/m^2)$$

Generally $I \sim p^2$. Hence

$$L_{I} = 10 \log \frac{I}{I_{0}} \quad (dB)$$

 $I_0 \ \ audibility \ limit \\ I_0 = 10^{-12} \ W/m^2$

More noise sources Noise intensity

$$I_{\Sigma} = I_{1} + I_{2} + \dots + I_{n}$$
$$I_{0} \cdot 10^{L_{\Sigma}/10} = I_{0} \cdot 10^{L_{1}/10} + \dots + I_{0} \cdot 10^{L_{n}/10}$$

Hence, noise level

$$L_{\Sigma} = 10 \log \sum_{i=1}^{n} 10^{L_i/10}$$

Examples of different noise levels:

- 160 dB space rocket start (up to 200 dB)
- 150 dB volcano explosion
- 140 dB super jet, sirens
- 130 dB industrial boiled, high pressure steam or gas draining
- 120 dB rolling mill, industrial hummer, thunder, plane
- 110 dB industrial work-shops, inside the orchestra
- 100 dB near to train, cargo vehicles, funicular etc.
- 90 dB noisy crossroads, pneumatic drill
- 80 dB auto, motorbike, noisy street, orchestra from the auditorium
- 70 dB static machines
- 60 dB street
- 50 dB normal speech, slow going car
- 40 dB silent offices
- 30 dB gardens, residence area
- 20 dB whispering

• 0 dB – sound sensation limit and silence

Overhead lines noise

Source

- wind broadband, turbulence, single frequency exceptionally
- "hum" 100 Hz, magnetostriction, more at TRF
- corona

o broadband, audible usually only during fog, rain, humidity
o air ionization near conductor due to el. field
o influenced also by the conductor surface quality

If discrete conductors charge Q (C/m) is known. Intensity of electrical field near to conductor

$$E = \frac{Q}{2\pi\varepsilon_0 r} \quad (V/m)$$

In case of n-bundle each conductor has charge Q/n, then average intensity E:

$$E_1 = \frac{1}{n} \frac{Q}{2\pi\varepsilon_0 r} \quad (V/m)$$

If the bundle distance is a (m) then for maximum surface value E

$$E_{max} = E_1 \cdot \left(1 + \frac{(n-1) \cdot r}{a} \right) \quad (V/m)$$

Surface intensity E_{max} affects corona discharge. It causes noise near to overhead line.

Many methods for overhead line noise calculation exist. For example CIGRE:

$$L = 3.5 \cdot E_{max} + 12 \cdot r - 33 \log D - 30 \quad (dB)$$
$$E_{max} (kV/cm), r(cm), D(m)$$

Typical OHL configuration	Basic support tower height N+0/(m)	Maximal surface electrical gradient ³⁾	Weather type	Maximal audible noise level under OHL ⁴⁾ , 1,8 m high	Audible noise level at the OHL protective zone border ⁵⁾ , 1,8 m high
(-)	H (m)	E (kV.cm ⁻ ¹)	(-)	L_{A} (dB)	L_{B} (dB)
1x400kV HORIZ Phase conductors	N+0 30,22 (m)	13,58	fair weather	18,64	12,25
1x3x3AlFe450/52 ¹⁾ Ground wires			rainy weather	43,64	37,25
2xAlFe180/59			heavy rain	47,14 ^N	40,75 ^N
2x400kV DANUBE	N+0 41,6 (m)	14,92	fair weather	23,93	19,23
Phase conductors 2x3x3A1Fe450/52			rainy weather	48,93 ^N	44,23 ^N
Ground wires 2xAlFe180/59			heavy rain	52,43 ^N	47,73 ^N

1x220kV HORIZ Phase conductors 1x3x1AlFe450/52 Ground wires 2xAlFe180/59	N+0 25,0 (m)	15,40	fair weather	22,01	16,10
			rainy weather	47,01 ^N	41,10 ^N
			heavy rain	50,51 ^{N,D}	44,60 ^N
1x220kV HORIZ Phase conductors			fair weather	23,97	18,07
1x3AlFe350/59 Ground wires 2xAlFe180/59	N+0 25,0 (m)	16,21	rainy weather	48,97 ^N	43,07 ^N
			heavy rain	52,47 ^{N,D}	46,57 ^N
2x220kV DANUBE			fair weather	28,52	23,85
Phase conductors 2x3x1AlFe 350/59	N+0 38,2 (m)	17,09	rainy weather	53,52 ^{N,D}	48,85 ^N
Ground wires 1xAlFe 180/59			heavy rain	57,02 ^{N,D}	52,35 ^{N,D}
2x220kV DANUBE			fair weather	13,35	8,87
Phase conductors 2x3x2AlFe 350/59	N+0 38,2 (m)	12,98	rainy weather	38.35	33,87
Ground wires 1xAlFe 180/59			heavy rain	41,85 ^N	37,37

		L1_II
L3_I	L1_I	L3_II

2x400 kV OHL DANUBE

I. CIRCUIT 2x400 kV OHL DANUBE		II. CIRCUIT 2x400 kV OHL DANUBE		
	^a L2=12,72 ^b L2=12,74 (kV.cm ⁻¹) (kV.cm ⁻¹) ^c L2=12,92 (kV.cm ⁻¹)	^a L1=12,73 ^b L1=12,71 (kV.cm ⁻¹) (kV.cm ⁻¹) ^c L1=12,92 (kV.cm ⁻¹)		
^a L3=14,41 bL3=14,92 (kV.cm ⁻¹) (kV.cm ⁻¹)		^a L2=14,39 ^b L2=14,81 (kV.cm ⁻¹) (kV.cm ⁻¹)		
$^{c}L3=14,52$ (kV.cm ⁻¹)		$^{c}L2=14,50 (kV.cm^{-1})$		

Note: L1, L2, L3 – 1^{st} or 2^{nd} system phases; a,b,c – partial wires of 3-bundles

 E_p maxima on partial wires AlFe 450/52 of 3-bundles 2x400kV OHL DANUBE