Czech Technical University in Prague Faculty of Electrical Engineering Department of Power Engineering

Renewable energy sources

AE1M15PRE – Transmission and Distribution of Electricity

Distributed energy production

Distributed energy production:

- High number of sources with low capacity
- High price per 1 kW installed capacity
- Outage does not influence quality of energy in grid
- Energy is produced at place of consumption, lower transmission losses
- Distributed energy production is connected to renewable sources development.
- Using renewable sources increase percent of green energy

production:

- Water flow energy
- Solar energy
- Energy from biomass
- Wind energy
- Geothermal energy
- Tidal energy

Small hydropower plant

- No greenhouse gas emission
- Does not consume any fossil resources
- Flexible energy production control, accumulation of energy increases power system stability.
- High level of automatization allows water flow control and it has positive ecological effect
- Czech Republic is between 3 seas watershed
- Hydro power plants with 17% of total capacity cover only 4% of total production
- 3/4 of hydro power potential is application with capacity up to 10 MW and 1570 GWh/year. Now about 500 GWh/year is used.
- Small hydro power plant installed capacity up to 10 MW

0,2

FLOW m3/s

Hydro power plant

Banki turbine

- Water fall from 1 up to 50 m
- Water flow from 50 I up to some m³/s

Pelton wheel (turbine)

- Water fall higher than 30 m and flow up to 10 l/s
- Used at mountain rivers

Francis turbine

- Used for low water fall up to 0,8 m and high water flow
- At pumped storage with water fall up to 500 m

Kaplan turbine

 Used for water fall fro m1 up to 20 m, water flows from 0,1 up to some m³/s (weir and small hydropower plant)

Solar energy

- In Czech Republic sun radiation bring 950 1340 kWh of energy per 1m²
- Annual sun hours are 1331 1844 hours

Solar radiation in Czech Republic – kWh/m²

Solar power plants

Solar power plants:

- Photovoltaic panels
 - high price per 1kW
 - low efficiency)
- Power plant with solar collector:
 - uses high efficient PV cell
 - complicated constriction
- Solar tower power plant
 - Uses steam turbine
 - Store energy in salt

Solar power

Solar power plants over 5 MWe in 2011

Biomasa

- Burning of biomass releases amount of greenhouse gases absorbed by the plant
- Low concentration of sulfur no SO₂
- Amount of NO_X depends on temperature of burning
- Temperature lower than 500°C release of unburned ash
- higher water content → lower calorific value
- Burning of biomass
 - solid
 - Liquid
 - gas
- Combined burning of biomass and fossil resources

Biomass

CO2

Fotosintesis

Combustión

CO2

Transformación de la biomasa en plantas de tratamiento

Biomasa

- Onshore power plants (close to consumers, lower efficiency)
- Offshore power plants (higher efficiency and constant wind)

Wind power plants over 2 MWe in 2010

Cogeneration

- Combined electricity and heat production, 30-40% electricity and 60-70% heat
- Fuel:
- Solid
- Liquid
- Gas

Distributed sources up to 1 MW

Installed capacity and energy production in CR

Power capacity 2010

Power production 2010

Power grid connection (UCTE)

Power grid connection (UCTE) in 2010

Power grid connection (UCTE) - power flow

Super grid

