Transformation of three phase circuits
quantities to components

Values In three phase system:
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are defined by a transformation matrixes Tu
and Ti:
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- Tu and Ti must be regular matrixes
- Tu and Ti are usually defined to be equal
(Tu=Ti=T)



Derivation of transformation of Z matrix:
Let consider a simple dependence between
phase currents and voltages of a three phase
circuit element described by a Z matrix.

Ua le le Z13 Ia
Ub - ZZl Zzz Zz3 Ib
_Uc_ _Z31 Z32 Z33__|c_

In matrix formulation:
[Uabc]:[zabc] [Iabc]

Similar dependence can be found for
transformed voltages and currents
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[ﬁomn] = [Zomn] [iomn]

The derivation:
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Therefore
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Analogically, it can be found a transformation
rule for an admittance matrix:

[Yomn] = [Tl]_l[?abC] [TU]

- For commonly used transformations:
Wigh

- The formulae for one circuit element can
be easily generalized to the whole circuit

- A transformation is a simplification of a
problem only if it diagonalises the Z
matrix

Which impedance matrixes can be
diagonalised?

- Cyclic symmetric matrixes
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- Phase symmetric matrixes (a special case
of [Z¢s])
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What transformation matrix T diagonalise the
Z matrixes?

- A matrix from created from eigen vectors
(eigen vectors are columns)

An eigen vector t solves the equation (A is an
eigen value):

([Zae ]~ LE)t]=[0]
How to get eigen vectors?

- First get eigen values
- Nonzeros solution for t are possible only if

det([ﬁabc]—ﬁ[E]):O

- Solving this equation for [Z;| gives
following eigenvalues:
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12 0
too] =10
L3> 0

t12 + t22 + t32 =0
- Using third eigenvalue Az In (2 fs —
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Any transformation matrix [T] which satisfies
previous conditions diagonalises |2f].

Transformation to symmetrical
components:

Let’s remind how a symmetrical three phase
voltages can be written
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Lets denote for symmetrical components
(indexes 0,m,n denotes general transformation
components):
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Where

U, IS zero component,
U, IS positive component,
U, IS negative component.

Positive component is defined so that:
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Negative component is defined so that:
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Which gives
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Zero component is defined so that:
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Which gives
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Transformation to diagonal components:

Let’s denote for symmetrical components:
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U, IS zero component,

U, IS component «,

U, Is component 3.
This system of components is suitable as
approach to solving of two phase failures.
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Zero component is defined so that:
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a, 4 component is defined so that:
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Therefore




Transformation form system of diagonal
components to system of symmetrical
components:
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Power invariance:

To ensure power invariance of symmetrical
and diagonal components we would have to
change the transformation matrixes to (original

matrixes devided by v/3):
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Symmetrical elements of harmonics:

Vector of phasors N (e. g. phase currents or
voltages) of k-th harmonics in symmetrical

system:
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Indexes a,b,c — denotes phase
K —harmonics
s — symmetrical system

Dominant symmetrical components for
harmonics:
3k Zero component
3k+1 positive component
3k-1 negative component



Let’s define for non-symmetrical system:

so that

Than for symmetrical components of non-
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symmetrical system and k-th harmonics reads:
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