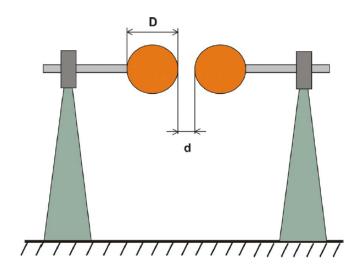
HIGH VOLTAGE ENGINEERING

High voltage and current measurement

High Voltage Measurement

- The high voltage measurement requires special methods, which demands increase with the amplitude of measured voltages (from kV up to MV)
- High voltage measurement of:
 - AC voltages
 - DC voltages
 - Impulses and transients
- The high voltage measurements in HV laboratories or in practice requires different approaches


Sphere gaps

- The classic method for the voltage peak measurement of ac, dc and impulse voltages
- Simple and reliable devices, which are used mainly as reference instruments with a limited accuracy
- Sphere gaps consists from two identical sphere electrodes spaced by gap with air insulation
- The measured value is determined on the basis of the electrode distance, when the flashover occures, with regards to an atmospheric conditions

Sphere gaps

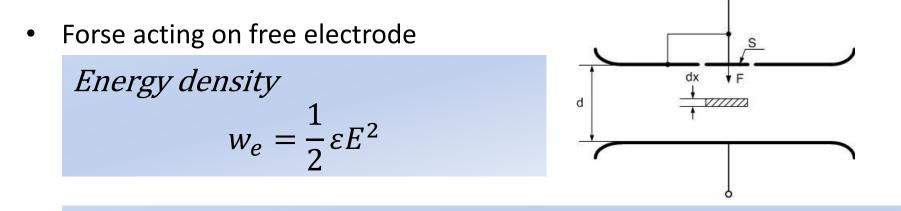
Peak value of flashover volatge of sphere gap at atmopheric pressure 1013 hPa and temperature 20°C

Distance [cm]	Ø 2 cm		Ø 10 cm		Distance [cm]	Ø 50 cm		Ø 150 cm	
	≅ (-)	(+)	≅ (-)	(+)	1	≅ (-)	(+)	≅ (-)	(+)
0,05	2,8		1		2,0	59,0			
0,10	4,7				2,2	64,5			
0,15	6,4				2,4	70,0			
0,20	8,0				2,6	75,5			
0,25	9,6				2,8	81,0			
0,30	11,2				3,0	86,0			
0,40	14,4				3,5	99,0			
0,50	17,4		16,8		4,0	112			
0,60	20,4		19,9		4,5	125			
0,70	23,2		23,0		5,0	138		138	
0,80	25,8		26,0		5,5	151		151	
0,90	28,3		28,9		6,0	164		164	
1,0	30,7		31,7		6,5	177		177	
1,2	(35,1)		37,4		7,0	189		190	
1,4	(38,5)		42,9		7,5	202		203	
1,5	(40,0)		45,5		8,0	214		215	
1,6			48,1		9,0	239		241	
1,8			53,5		10,0	263	007	266	
2,0			59,0		11	286	287	292	
2,2			64,5	70.0	12	309	311 334	318	
2,4			69,5	70,0	13 14	331 353	334	342 366	
2,6			74,5	75,5	14	353	357	366	
2,8			79,5	80,5	15	373	402	414	
3,0			84,0 95,0	85,5 97,5	10	411	402	414	
4,0			105	109	18	429	442	462	
4,0			115	120	19	445	461	486	
5,0			123	130	20	460	480	510	
5,5			(131)	(139)	22	489	510	560	
6,0			(138)	(148)	24	515	540	610	
6,5			(144)	(156)	26	(540)	570	655	
7,0			(150)	(163)	28	(565)	(595)	700	
7,5			(155)	(170)	30	(585)	(620)	745	
	1				32	(605)	(640)	790	
∼ a.c. voltage					34	(625)	(660)	835	
					36	(640)	(680)	875	880
					38	(665)	(700)	915	925
					40	(670)	(715)	955	965
= d.c. voltage					45			1030	1060
u u u u u u u u u u u u u u u u u u u				50			1130	115	
□ Impulse voltage (U ₅₀ , □ polarity)					55			1210	1240
					60			1280	1310
-	polarit	.y)			65			1340	1380
 → Impulse voltage (U₅₀, + polarity) 					70			1390	1430
					75			1440	1480
					80			(1490)	(1530
	Poluli	- 7 /			85			(1540)	(1580
					90			(1580)	(1630
					100			(1660)	(1720
					110			(1730)	(1790
					120			(1800)	(186

Correction on atmospheric condition

- Reference condition $t_0=20$ °C, $p_0=101,3$ kPa, $v_a=8,5$ g/m³
- Air density

$$\delta = \frac{p}{p_0} \cdot \frac{273 + t_0}{273 + t}$$


- The peak value of measured voltage $U = U_N \delta$ v rozsahu $0.95 < \delta < 1.05$
- Humidity correction

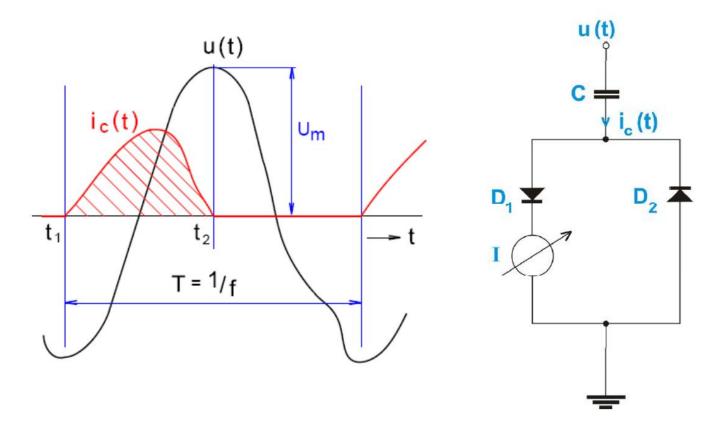
$$k_{\nu} = 1 + 0,002 \left(\frac{\nu}{\delta} - 8,5\right)$$

Electrostatic voltmeter

- For direct measurement of high potential typically from hundreds of volts up to hundreds of kilovolts
- a.c. and d.c. voltage measurements
- High internal resistance
- High frequency bandwidth of measured voltage, few MHz (limited by serial resonance of measured circuit – parasitic inductance and capacity)
- Insulation gas is usually air or SF₆ gas for higher voltages (up to 1MV, accuracy 0.1%).
- The accuracy for special construction can reach 1 % and 2 % for common using

Electrostatic voltmeter

Energy in element dx


$$dw = w_e S dx = \frac{1}{2} \varepsilon S E^2 dx$$

Acting force on free electrode

$$F = \frac{dw}{dx} = \frac{1}{2}\varepsilon SE^2 = \frac{1}{2}\varepsilon S\frac{U^2}{d^2}$$

The force mean value for time variable voltage
$$\frac{1}{T}\int_0^T F(t)dt = \frac{\varepsilon S}{2d^2T}\int_0^T U^2(t) = \frac{\varepsilon S}{2d^2}U_{RMS}^2$$

Peak voltmeter (Chubb-Fortescue method)

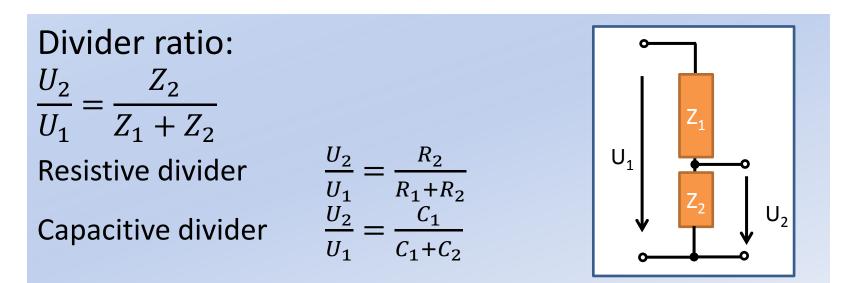
• Simple and accurate method for the peak measurement of a.c. voltages

Peak voltmeter (Chubb-Fortescue method)

Current through capacitor C:

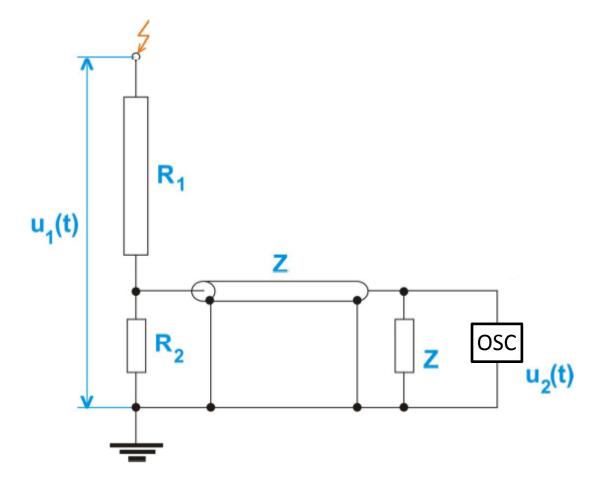
$$i_C = C \frac{du}{dt}$$

Mean value of measured current:

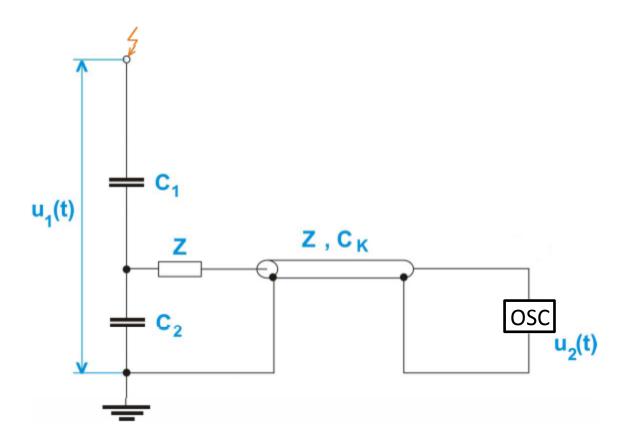

$$I = \frac{1}{T} \int_{t_1}^{t_2} i_C dt = \frac{C}{T} [u(t_2) - u(t_1)] = \frac{C}{T} U_{pp}$$

Peak value of measured voltage:

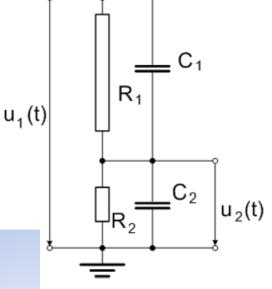
$$U_m = \frac{I}{2Cf}$$


Voltage dividers

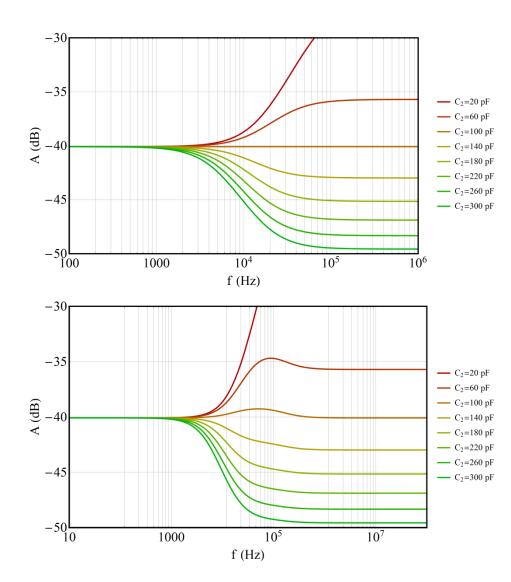
- Voltage divider can consists from the combination of passive elements (resitors, capacitors, inductors)
- The divider dimensions are related to maximal applied voltage


Resistive divider

- Měření stejnosměrných, střídavých a impulzních napětí
- Velikost chyby je funkcí součinu kapacity vn a odporu děliče


Capacitive divider

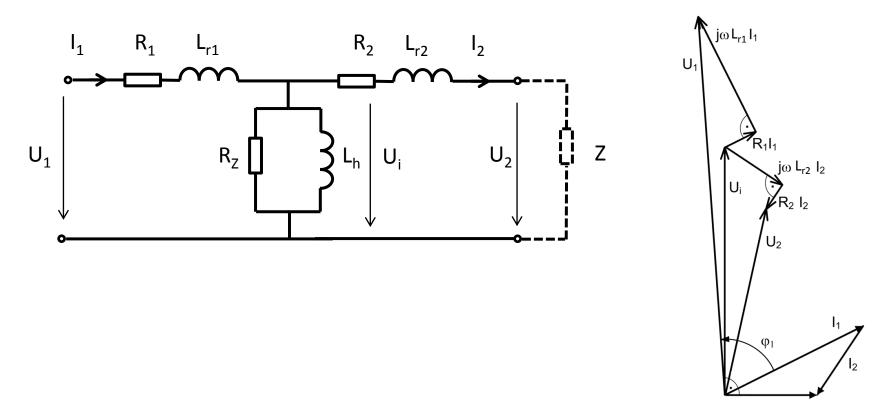
- Měření střídavých a impulzních napětí
- Jednodušší a reprodukuje věrněji než odporový dělič


RC voltage divider

- Capacitive divider is dominant for the fast transients and resistive divider for the slow transients
- Frequency independency can be reach by compensation

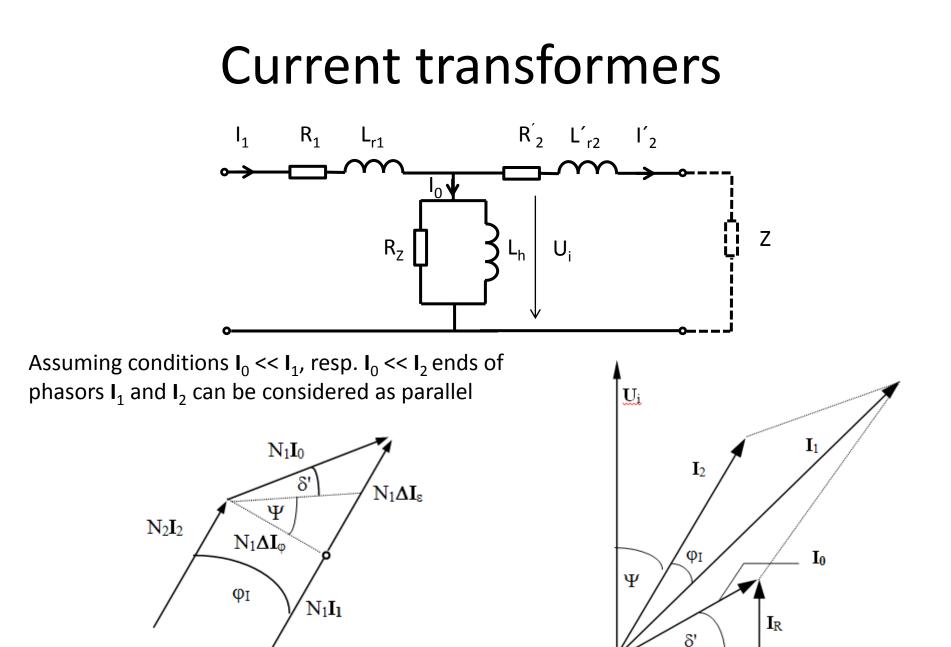
 $\left(\right)$

Compensation of RC divider


Attenuation of RC divider for various capacitors C_2 , the divider is fully compensated when C_2 =100 pF

Attenuation of RC divider with parasitic inductance of 1 mH

Instrument voltage transformers


- Single phase transformers
- In the electrical power grid performs the measuring function (information, billing) and also as inputs for protection devices
- Galvanic isolation of high voltage circuits from measuring instruments

Instrument voltage transformers

Voltage error definition

$$\varepsilon_U = \frac{p_U U_2 - U_1}{U_1} \cdot 100$$

 I_L

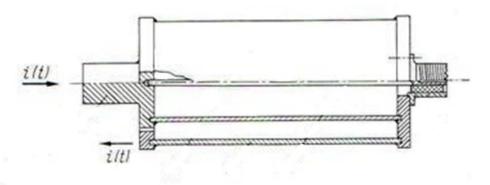
Φh

Current error of CT

Current error

b

$$\varepsilon_I = \frac{p_I I_2 - I_1}{I_1} \cdot 100$$


From simplified phasor diagram can be expressed as

$$\varepsilon_{I} = \frac{N_{2}I_{2} - N_{1}I_{1}}{N_{1}I_{1}} = \frac{N_{1}\Delta I_{\varepsilon}}{N_{1}I_{1}} = -\frac{N_{1}I_{0}}{N_{1}I_{1}}\sin(\delta' + \psi)$$
where $N_{1}I_{0} = Hl = \frac{Bl}{\mu_{0}\mu_{r}}$, then the amplitude and phase error can be expressed as:

$$\varepsilon_{I} = \frac{Bl}{\mu_{0}\mu_{r}N_{1}I_{1}}\sin(\delta' + \psi)$$
$$\varphi_{I} \approx tg \ \varphi_{I} = \frac{Bl}{\mu_{0}\mu_{r}N_{1}I_{1}}\cos(\delta' + \psi)$$

Coaxial shunts

- The measured high current (a.c., d.c., impulses) flows throught accurate resistor
- The skin effect at higher frequencies is eliminated by coaxial construction – manganin strips arranged into cylindric area
- Disadvantages can be the galvanic connection of measuring system with measured circuit and thermal and mechanical stress in case of high current measurement

Rogowski coil

Measured current can be expressed as:

$$i(t) = \frac{1}{M} \int_0^T u(t) dt$$

where M is a mutual inductance between conductor N_1 and sensing winding N_{RC} For harmonic current:

 $I(\omega) = \frac{U_i(\omega)}{j\omega M}$

The RC constant (ratio) is then:

$$k_{RC} = \frac{U_i}{\omega I}$$