HIGH VOLTAGE ENGINEERING

High Voltage Generation

High Voltage Laboratory

- The needed voltage level increases with increasing of transmitted power
- Currently the majoroty of power is transmitted by ac systems with rated voltage of 400 kV
- At the same time there is an increasing portion of HVDC (high-voltage direct current) technology with the most common rated voltage of ±800 kV (became more economically atractive)

Voltage stresses

- The operating voltage does not seriously stress the insulation systém, however determines its dimensions
- The voltage stress arise from various overvoltages, when the peak value can be dependent (schwitching overvoltages) or independent on rated voltage (lightning overvoltages)
- For designing of insulation system is important to determine:
 - which voltage stresses must withstand
 - the reponse of the insulation system when subjected to these voltage stresses

Testing Voltages

- An insulation system must be tested during its development and before commissioning
- Voltage tests
 - Testing with power frequency voltages
 - Testing with lightning impulse voltages
 - Testing with schwitching impulses
 - Testing with dc voltages
- Selection of the test and the value of testing voltage depends on type of devices and its rated voltage

Testing laboratories

Max. voltage	ac voltage	Lightning impulse	Schwitch- ing impulse	Minimal distance
		(kV)		(m)
36	70	170	· · · · · · · · · · · · · · · · · · ·	0,4
123	230	550	· - :	1,2
245	460	1050	· - :	2,5
420	510	1425	1050	5 :
525	630	1550	1175	·····8·········
765	850	2100	1550	12
1200	1400	2550	2100	20
1600	1900	3150	2550	30

Testing laboratories

Generation of high voltages

- The high voltage generators are used both in high voltage laboratories and in numerous other applications
- Classes of generators
 - DC voltage sources
 - AC voltage sources
 - Impulse (transient) sources

By transformation from ac voltages (rectifiers)

Charge Q transferred to load R_z during one period T

$$Q = \int_{T} i_{z}(t)dt = \frac{1}{R_{z}} \int_{T} u_{z}(t)dt =$$

$$= I_{z}T = \frac{I_{z}}{f}$$

where I_z is the mean value of current. Charge Q is also equal to:

$$Q = \int_{\alpha T} i_t(t)dt = \int_T i_z(t)dt$$

The exact solution is complicated, so α =0 is assumed and then the voltage ripple can be expressed as:

$$Q = 2\delta UC \to \delta U = \frac{Q}{2C} = \frac{I_Z}{2Cf}$$

Voltage doublers (Greinacher doubler)

Voltage multipliers (Cockcroft-Walton)

Van de Graaff generator

- It is possible to reach extreme values of dc voltages (8MV)
- The large charge is reached by continuous charge acummulation on sphere electrode from belt by using collector
 - The charge comes from higher potential U₁ to lower potential U₂.

- AC testing suplies are usually single-phase
- The voltage shape must be pure sinusoidal as possible
- The ration between peak value and rms value must be $\sqrt{2}\pm5\%$
- At high voltage testing of insulation system the load has always capacitive character. The source power is then

$$P = kU_n^2 \omega C_t$$

where k≥1 is constant which respect other capacitances of test circuit and C₁ is capacity of tested object

Testing transformers

Cascaded transformers

Series resonant circuits

Resonant circuits with variable test frequency

Single-stage impulse generator

The equations for the first circuit are:

$$u_1 = u_2 - R_1 C_1 u_1'$$
$$-C_1 u_1' = \frac{u_2}{R_2} + C_2 u_2'$$

Initial conditions

$$u_1(0) = U_c$$
$$u_2(0) = 0$$

Solution:

$$u_2 = kU_c[e^{\alpha_1 t} - e^{\alpha_2 t}]$$

where

$$k = \frac{C_1 R_2}{\sqrt{(C_1 R_1 + C_1 R_2 + C_2 R_2)^2 - 4R_1 R_2 C_1 C_2}}$$

$$\alpha_1, \alpha_2 = \frac{C_1 R_1 - C_1 R_2 - C_2 R_2 \pm \sqrt{(C_1 R_1 + C_1 R_2 + C_2 R_2)^2 - 4R_1 R_2 C_1 C_2}}{2R_1 R_2 C_1 C_2}$$

 The influence of generator parameters on the shape of output voltage

Voltage efficiency

The voltage efficiency of impulse generator can be determined from formula:

$$\eta = \frac{U_p}{U_c} < 1$$

where U_p is peak value of impuls and U_c is charging voltage.

The peak value U_p is:

$$U_p = u_2(t_{max})$$

where t_{max} can be find from condition

$$\frac{du_2}{dt} = 0$$

then $t_{max}=\frac{Ln\left(\frac{\alpha_1}{\alpha_2}\right)}{\alpha_2-\alpha_1}$ and by substitution to formula for u₂ and formula for efficiency the final form is:

$$\eta = k \left(\left(\frac{\alpha_1}{\alpha_2} \right)^{\frac{\alpha_1}{\alpha_2 - \alpha_1}} - \left(\frac{\alpha_1}{\alpha_2} \right)^{\frac{\alpha_2}{\alpha_2 - \alpha_1}} \right)$$

Multi-stage impulse generator – Marx generator

The total parameters of generator are:

$$\frac{1}{C_1} = \sum_{n} \frac{1}{C_1'}$$

$$R_1 = R_1' + \sum_{n} R_1'$$

$$R_2 = \sum_{n} R_2'$$

- Full impulses
 - Lightning impulses
 - $T_1 = 1.2 \mu s \pm 30\%$, $T_2 = 50 \mu s \pm 20\%$,
 - Schwitching impulses
 - $T_1 = 250 \mu s \pm 20\%$, $T_2 = 2500 \mu s \pm 20\%$

Chopped impulses

- Detrmination of parameters (Angelini)
 - for all connection of impulse generator is possible to express the output voltage as

$$\eta u = \frac{\alpha U_c}{\sqrt{\alpha^2 - 1}} \left[e^{\frac{-(\alpha - \sqrt{\alpha^2 - 1})t}{\Theta}} - e^{\frac{-(\alpha + \sqrt{\alpha^2 - 1})t}{\Theta}} \right]$$

— Constants α , η , Θ for the connection A and B are shown in the table

Connection	α=	η=	Θ=
А	$\frac{\eta}{2} \sqrt{\frac{R_2 C_1}{R_1 C_2}}$	$1 + \frac{C_2}{C_1} + \frac{R_1}{R_2}$	$\sqrt{C_1C_2R_1R_2}$
В	$\frac{\eta}{2} \sqrt{\frac{R_2 C_1}{R_1 C_2}}$	$1 + \frac{C_2}{C_1} \left(1 + \frac{R_1}{R_2} \right)$	$\sqrt{C_1C_2R_1R_2}$

The formulas for parameters determinantion

Zapojení	X=	R ₁ =	R ₂ =
А	$\frac{1}{\alpha^2} \left(1 + \frac{C_1}{C_2} \right)$	$\frac{\alpha\Theta}{C_1}\big(1-\sqrt{1-X}\big)$	$\frac{\alpha\Theta}{C_1+C_2}\big(1+\sqrt{1-X}\big)$
В	$\frac{1}{\alpha^2} \left(1 + \frac{C_2}{C_1} \right)$	$\frac{\alpha\Theta}{C_2}(1-\sqrt{1-X})$	$\frac{\alpha\Theta}{C_1+C_2}\big(1+\sqrt{1-X}\big)$

- The required waveform of impulse voltage is usually known (T_1 and T_2) and parameters R_1 , R_2 , C_1 and C_2 are looked for
- One pair of parameters is choosed and second is consequently determined using previous graph

Numerical calculation

 The different numerical methods can be used for direct solving of equation system to find required parameters (see the Mathematica file)