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Introduction

• Transformers connected to long outdoor lines 
are often exposed to atmospheric overvoltage

• Should the respective overvoltage protection 
malfunction, a voltage wave will appear on 
transformer input terminals

• Such a wave might cause insulation damage 
and therefore it is necessary to analyze the 
subsequent voltage transient inside the 
transformer
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Winding behaviour

• Winding is a group of resistors, coils and 
capacitors

• In the beginning of the transient, the 
waveform is determined primarily by the 
capacity of the winding, whereas the 
inductance governs the waveform at the end

• Let us find the distribution of the voltage 
during the whole transient
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Voltage distribution

• The simplest theory that determines the voltage 
distribution was presented by Wagner

• The theory works with the following 
assumptions:

– The winding coil has only one layer

– The resistance of the winding is minimal, i. e. equal to 
zero in the calculation

– Mutual inductive and capacitive coupling is neglected

– A voltage unit step is applied to the input terminals
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Equivalent circuit with distributed 
parameters

• L (H/m) is the total inductance relative to length
• C (F/m) is the capacity between the coil wire and the 

ground relative to length
• K (F∙m) is inter-turn capacity relative to length
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Voltage distribution

• Kirchhoff‘s current law for the upper-right node:

𝑖𝐿 + 𝑖𝐾 = 𝑖𝐿 +
𝜕𝑖𝐿

𝜕𝑥
𝑑𝑥 + 𝑖𝐾 +

𝜕𝑖𝐾

𝜕𝑥
𝑑𝑥 + 𝐶𝑑𝑥

𝜕𝑢

𝜕𝑡
(1)

• Current passing through the longitudinal capacity:

𝑖𝐾 = 𝑖𝐿 +
𝐾

𝑑𝑥

𝜕

𝜕𝑡
𝑢 −

𝜕𝑢

𝜕𝑥
𝑑𝑥 − 𝑢 = −𝐾

𝜕2𝑢

𝜕𝑥𝜕𝑡
(2)

• Kirchhoff‘s voltage law for the central loop:

𝑢 −
𝜕𝑢

𝜕𝑥
𝑑𝑥 = 𝐿𝑑𝑥

𝜕𝑖𝐿

𝜕𝑡
+ 𝑢 (3)
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Voltage distribution

• First time derivative of (1) is:
𝜕𝑖𝐿

𝜕𝑥
+

𝜕𝑖𝐾

𝜕𝑥
+ 𝐶

𝜕𝑢

𝜕𝑡
= 0 (4)

• Applying another time derivative on (1) provides us 
with:

𝜕2𝑖𝐿

𝜕𝑥𝜕𝑡
+

𝜕2𝑖𝐾

𝜕𝑥𝜕𝑡
+ 𝐶

𝜕2𝑢

𝜕𝑡2
= 0 (5)

• The first term can be substituted from (2) as:

𝜕2𝑖𝐿

𝜕𝑥𝜕𝑡
− 𝐾

𝜕4𝑢

𝜕𝑥2𝜕𝑡2
+ 𝐶

𝜕2𝑢

𝜕𝑡2
= 0 (6)
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Voltage distribution

• By substituting from (3), we receive next:

−
1

𝐿

𝜕2𝑢

𝜕𝑥2
− 𝐾

𝜕4𝑢

𝜕𝑥2𝜕𝑡2
+ 𝐶

𝜕2𝑢

𝜕𝑡2
= 0 (7)

• Multiplying the previous equation by –L gives us the 
ultimate expression:

𝜕2𝑢

𝜕𝑥2
+ 𝐿𝐾

𝜕4𝑢

𝜕𝑥2𝜕𝑡2
− 𝐿𝐶

𝜕2𝑢

𝜕𝑡2
= 0 (8)

• In other words, we obtained a wave equation for a coil 
with unknown function of voltage u(t,x)

• Since (8) is a fourth order partial differential equation, its 
analytical solution will be rather difficult

• Such equations are generally solved by numerical 
methods
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Voltage distribution – solution

• Let us focus on the analytical solution of the two 
simplest cases, i.e., for t = 0 and t → ∞

• In the case t = 0, inductance effectively behaves as an 
open circuit, allowing no current to pass through it

• Therefore, we can omit inductances in the schematic 
and work only with capacitances

• Also, since time is constant, the function of voltage 
reduces to u(0,x) = u0
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Voltage distribution – solution for u0

• The first step of deriving the expression for u0 utilizes 
Kirchhoff‘s current law. Since time is fixed, the 
current transforms into charge, as follows:

𝑞0 − 𝑞0 + 𝑑𝑞0 − 𝐶𝑑𝑥𝑢0 = 0, (9)

where q0 is the charge on capacity K/dx

• In (9), q0 vanishes after subtraction. If we multiply 
the equation by 1/dx, we obtain:

−
𝑑𝑞0

𝑑𝑥
= 𝐶𝑢0 (10)
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Voltage distribution – solution for u0

• Kirchhoff‘s law for voltage loop provides us with:

𝑢0 − 𝑑𝑢0 =
𝑞0
𝐾

𝑑𝑥

+ 𝑢0 (11)

• Charge q0 can be expressed from (11) as:

𝑞0 = −𝐾
𝑑𝑢0

𝑑𝑥
(12)

• By deriving (12) by time, we receive the following expression:

𝑑𝑞𝑐

𝑑𝑥
= −𝐾

𝑑2𝑢0

𝑑𝑥2
= −𝐶𝑢0 (13)

• Finally, by substituting the right-hand term with (10), we 
obtain:

𝑑2𝑢0

𝑑𝑥2
=

𝐶

𝐾
𝑢0 (14)
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Voltage distribution – solution for u0

• Equation (14) represents a second order ordinary 
differential equation with solution in form:

𝑢0 = 𝐴0𝑒
𝛾𝑥 + 𝐵0𝑒

−𝛾𝑥 (15)

where γ = 𝐶/𝐾

Coefficients A0 and B0 can be determined from 
boundary conditions, i.e., u0(x = 0) = 1 and u0(x = l) = 0 
(for grounded end of winding of total length l):

𝐴0+𝐵0= 1 → 𝐵0 = 1 − 𝐴0 (16)

𝐴0𝑒
𝛾𝑙 + 𝐵0𝑒

−𝛾𝑙 = 0 (17)
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Voltage distribution – solution for u0

• Substituting (16) into (17) gives us:

𝐴0𝑒
𝛾𝑙 + (1 − 𝐴0)𝑒

−𝛾𝑙 = 0 →

𝐴0 =
−𝑒−𝛾𝑙

𝑒𝛾𝑙−𝑒−𝛾𝑙
, 𝐵0 =

𝑒𝛾𝑙

𝑒𝛾𝑙−𝑒−𝛾𝑙
(18)

• Using the terms from (18), we obtain new equation 
for u0 as per (15):

𝑢0 =
−𝑒−𝛾𝑙

𝑒𝛾𝑙−𝑒−𝛾𝑙
𝑒𝛾𝑥 +

𝑒𝛾𝑙

𝑒𝛾𝑙−𝑒−𝛾𝑙
𝑒−𝛾𝑥 (19)



Voltage Distribution along Transformer Winding 14

High Voltage Engineering

Voltage distribution – solution for u0

• By converting right-hand side of (19) into one term, 
we receive the following expression:

𝑢0 =
𝑒𝛾(𝑙−𝑥)−𝑒−𝛾(𝑙−𝑥)

𝑒𝛾𝑙−𝑒−𝛾𝑙
(20)

• Equation (20) can be rewritten using hyperbolic 
function identity:

sinh 𝑥 =
1

2
(𝑒𝑥−𝑒−𝑥), (21)

as

𝑢0 =
sinh 𝛾(𝑙−𝑥)

sinh 𝛾𝑙
(22)
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Voltage distribution – solution for uF

• Let us examine the other case, where time t
approaches infinity (we search for final values of 
voltage uF)

• As the transient certainly becomes steady state for 
times approaching infinity, we assume that all 
functions are independent on time, and hence their
time derivatives are zero

• Applying the previous to equation (8), we obtain:

𝑑2𝑢𝐹

𝑑𝑥2
= 0 (23)
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Voltage distribution – solution for uF

• The solution of (23), which is an implicit ordinary 
differential equation of second order, is in form:

𝑢𝐹 = 𝐴𝐹 ∙ 𝑥 + 𝐵𝐹 (24)

• Once again, AF and BF is determined by boundary 
conditions (grounded winding):

𝑢𝐹 0 = 1 → 𝐵𝐹 = 1 (25)

and

𝑢𝐹 𝑙 = 0 → 𝐴𝐹 ∙ 𝑙 + 1 = 0 → 𝐴𝐹 = −
1

𝑙
(26)
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Voltage distribution – maximum stress

• Undamped EM oscillations occur between u0 and uF. 
Their trend is given by the solution of equation (8) 
(original PDE) for respective times t

• Winding insulation is stressed the most at time t = 0 
and position x = 0. This can be expressed as:

𝐸0 = −grad(𝑢0) = −
𝑑𝑢0

𝑑𝑥
= −

𝑑

𝑑𝑥

sinh 𝛾 𝑙−𝑥

sinh 𝛾𝑙
=

𝛾 cosh 𝛾 𝑙−𝑥

sinh 𝛾𝑙
→ 𝐸0,max = 𝛾 ∙ cotgh(𝛾𝑙) (27)

• Practically γl > 3, therefore cotgh(γl) ≈ 1 and E0,max ≈ γ
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Voltage distribution – ungrounded
winding

• Initial voltage distribution along an ungrounded coil 
for different values of γl

• The derivation of expression for u0 for ungrounded 
coil is more complicated, as the second boundary 
condition is unknown (u0(0,l) ≠ 0)

• Therefore, let us state only the ultimate expression:

𝑢0 =
cosh 𝛾(𝑙−𝑥)

cosh 𝛾𝑙
(28)
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Voltage distribution plots

• Initial voltage distribution along a grounded and 
ungrounded coil for different values of γ

Grounded end of a coil Ungrounded end of a coil
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Voltage distribution – effects

• During the transient, undamped oscillations can reach 
values of up to 150/280 % of the initial voltage for 
grounded/ungrounded winding, respectively.

• To prevent such large values, several methods of 
equalizing the initial voltage distribution along the 
winding are employed:
– Disc windings: ground capacity C can be compensated 

(capacitive screen) and/or the series capacity can be increased 
(turn interlacing)

– Multi-layered windings: ground capacity C is present only for the 
first and the last layer. Moreover, the inter-layer capacity is 
much larger than the capacity between winding discs.


