Example 1:

From the daily load profile determine consumed electric energy, maximal, average and minimal load, time of full loading and utilization time.

Solution:

Daily consumed energy:
$W=\int_{0}^{T} P(t) \cdot d t=20 \cdot 8+40 \cdot 12+20 \cdot 4=720 \mathrm{kWh}$
Average, maximal and minimal load:
$P_{a v g}=\frac{W}{T}=\frac{720}{24}=30 \mathrm{~kW}$
$P_{\max }=40 \mathrm{~kW}$
$P_{\text {min }}=20 \mathrm{~kW}$

Time of full load:
$\tau=\frac{W}{P_{\max }}=\frac{720}{40}=18 \mathrm{~h}$
Utilization time:
$\tau_{Z}=\frac{\int_{0}^{T} P(t)^{2} \cdot d t}{P_{\max }^{2}}=\frac{20^{2} \cdot 8+40^{2} \cdot 12+20^{2} \cdot 4}{40^{2}}=\frac{24000}{1600}=15 \mathrm{~h}$

Example 2:

From the daily load profile determine consumed electric energy, maximal, average and minimal load, time of full loading and utilization time.

Solution:

Daily consumed energy:
$W=\int_{0}^{T} P(t) \cdot d t=10 \cdot 2+20 \cdot 6+40 \cdot 2+60 \cdot 6+50 \cdot 2+30 \cdot 4+10 \cdot 2=820 \mathrm{kWh}$
Average, maximal and minimal load:
$P_{\text {avg }}=\frac{W}{T}=\frac{820}{24}=34.2 \mathrm{~kW}$
$P_{\max }=60 \mathrm{~kW}$
$P_{\text {min }}=10 \mathrm{~kW}$

Time of full load:
$\tau=\frac{W}{P_{\max }}=\frac{820}{60}=13.7 \mathrm{~h}$
Utilization time:
$\begin{aligned} \tau_{Z}=\frac{\int_{0}^{T} P(t)^{2} \cdot d t}{P_{\max }^{2}} & =\frac{10^{2} \cdot 2+20^{2} \cdot 6+40^{2} \cdot 2+60^{2} \cdot 6+50^{2} \cdot 2+30^{2} \cdot 4+10^{2} \cdot 2}{60^{2}}=\frac{36200}{3600} \\ = & 10 \mathrm{~h}\end{aligned}$

Example 3:

Hydroelectric power plant with installed power $\mathrm{P}_{\text {ins }}=85 \mathrm{MW}$ produces 180 GWh electric energy for each year. How are average value of power and time of installed power?

Solution:

Average value of power:
$P_{\text {avg }}=\frac{W}{T}=\frac{180 \cdot 10^{3}}{365 \cdot 24}=20.55 \mathrm{MW}$

Time of installed power:
$\tau=\frac{W}{P_{\max }}=\frac{180 \cdot 10^{3}}{85}=2117.65 \mathrm{~h} \approx 88.24 \mathrm{days}$

Example 4:

Determine economically effective distribution of load in electrical power system according to figure. Neglect losses.

Average increments of costs are given by :

$$
\begin{aligned}
& b_{1}=4+0,25 \cdot P_{1}+0,005 \cdot P_{1}^{2} \\
& b_{2}=3+0,12 \cdot P_{2}+0,003 \cdot P_{2}^{2}
\end{aligned}
$$

Total load of power system $\mathrm{P}=90 \mathrm{MW}$.

Solution:

The condition of economically effective distribution of load will be fulfilled if $b_{1}=b_{2}$ and $\varphi=P_{1}+$ $P_{2}-P=0$

The P_{2} can be then expressed as:

$$
P_{2}=P-P_{1}
$$

And from the substitution to the equation $b_{1}=b_{2}$ we can get:

$$
4+0,25 \cdot P_{1}+0,005 \cdot P_{1}^{2}=3+0,12 \cdot\left(P-P_{1}\right)+0,003 \cdot\left(P-P_{1}\right)^{2}
$$

After rearrangement of the equation:

$$
4+0,25 \cdot P_{1}+0,005 \cdot P_{1}^{2}=3+0,12 \cdot P-0,12 \cdot P_{1}+0,003 \cdot P^{2}-0,006 \cdot P \cdot P_{1}+0,003 \cdot P_{1}^{2}
$$

The final form is quadratic equation:

$$
0,002 \cdot P_{1}^{2}+0,91 \cdot P_{1}-34,1=0
$$

By solving this equation the effective loading of first power plant can be determined:

$$
P_{1}=\frac{-0,91+\sqrt{0,91^{2}+4 \cdot 0,002 \cdot 34,1}}{2 \cdot 0,002}=34,84 \mathrm{MW}
$$

The loading of second power plant is then:

$$
P_{2}=P-P_{1}=90-34,84=55,16 M W
$$

The check, whether the calculation is correct:

$$
\begin{aligned}
& b_{1}=4+0,25 \cdot 34,84+0,005 \cdot 34,84^{2}=18,74 \\
& b_{2}=3+0,12 \cdot 55,16+0,003 \cdot 55,16^{2}=18,74
\end{aligned}
$$

