Example 1:

The operating power plant consumes 130 wagons of coal per day. The coal has the heating value $q_v = 14.5 \text{ MJ/kg}$ and the power plant efficiency is $\eta = 37 \%$. Each wagon transports 50 t of coal. Calculate, whether these parameters are sufficient enough to produce minimal constant power of 400 MW.

Solution:

Daily supply of coal:	al: $m = 130 \cdot 50 = 6\ 500\ t$		
Gained energy:	$\sum Q = m \cdot q_V = 6\ 500 \cdot 1\ 000 \cdot 14,5 = 94\ 250\ GJ/day$		
Supplied power:	$P_S = \frac{\sum Q}{t(24h)} = \frac{94250}{24\cdot3600} = 1091MW$		
Produced power:	$P_P = 37\% \cdot P_S = 0.37 \cdot 1\ 0.91 = 404\ MW$		

The power 404 MW. \rightarrow requirements are met.

Example 2:

A thermal power plant produces the daily power 120 MW in a combined operation (heat and electricity) during 18 h. In the remaining time 6 h, the power plant operates in the pure heating regime and produces 5 480 GJ of heat. The coal consumption of the power plant is 3 200 t and the coal heating value is 12 MJ/kg. Is it possible to use such a fuel, when the economically permissible limit of efficiency is $\eta = 33$ %?

Solution:

Produced energy:	$Q = P \cdot t$
a) Power station	
h) lleating plant	$Q_E = P * t = 120 \cdot 10^6 \cdot 18 \cdot 3\ 600 = 7\ 776\ GJ$
b) Heating plant	$Q_H = 5 \ 480 \ GJ$
Total produced heat:	$Q = Q_E + Q_H = 7776 + 5480 = 13256 GJ$

Supplied heat:

$$Q_S = m \cdot q_V = 3\ 200 \cdot 10^3 \cdot 12 \cdot 10^6 = 38\ 400\ GJ$$

Efficiency of the power plant:

$$\eta = \frac{Q}{Q_S} = \frac{13\,256 \cdot 100}{38\,400} = \mathbf{34, 5} \%$$

The power plant efficiency is 34.5 % and used fuel is acceptable.

Example 3:

Compare the amount of required fuel for the permanent operating power plant of generated power 100 MW with efficiency η = 35 %. Considered fuels are the brown coal with heating value 12 MJ/kg and the uranium with heating value 82.5·10⁶ MJ/kg.

Solution:

Produced energy:

 $Q = P \cdot t = 100 \cdot 10^{6} \cdot 24h = 2\,400\,MWh \rightarrow 8\,640\,GJ\,(1\,MWh = 3\,600\,MJ)$

Supplied energy:

$$Q_S = \frac{Q}{\eta} = \frac{8\ 640}{0.35} = 24\ 685\ GJ$$

Amount of used fuel:

$$m = \frac{Q_S}{q_V}$$

a. Brown coal

$$m_{hu} = \frac{Q_S}{q_{V_{co}}} = \frac{24\,685 \cdot 10^3}{12} = 2057 \, t/day$$

b. Uranium

$$m_{ur} = \frac{Q_S}{q_{V_{ur}}} = \frac{24\ 685 \cdot 10^3}{82.5 \cdot 10^6} = \mathbf{0}, \mathbf{299}\ \mathbf{kg}/\mathbf{day}$$

Example 4:

Calculate the amount of needed fuel to produce energy 1 kWh. The average efficiency of the power plant is $\eta_e \approx 25\%$.

Solution:

Required energy to produce 1 kWh:

$$Q_c = \frac{3\ 600\ kJ}{\eta_e} = \frac{3\ 600}{0.25} = 14.4\ MJ$$

Heating value is $q_c = (8 \div 25) MJ/kg$

For 1 kWh is needed: $\frac{Q_c}{q_c} kg \ coal$

Summary of the fuel consumption according to type of coal:

Type of coal	Heating value (MJ/kg)	Consumption (kg/kWh)
Anthracite	30	0,48
Black coal	25	0,58
Brown coal	17,8	0,81
Lignite	10	1,44

Example 5:

Calculate the steam consumption to produce 1 kWh. The average efficiency of a thermal cycle is $\eta_t \approx$ 27%. Assume, the heat content of steam $Q_p \approx 3.3~MJ/kg$.

Solution:

The heat content of steam corresponds to the enthalpy at admission steam parameters (8 MPa, 450 °C).

The consumption of steam for 1 kWh:

$$\dot{q} = Q_{p} \cdot \eta_{t} = 3.3 \cdot 0.27 = 0.891 \text{ MJ/kg}$$
$$\dot{w} = \frac{Q_{p} \cdot \eta_{t}}{3.6} = \frac{3.3 \cdot 0.27}{3.6} = 0.2475 \text{ kWh/kg}$$
$$m_{p1} = \frac{3.6}{Q_{p} \cdot \eta_{t}} = \frac{3.6}{3.3 \cdot 0.27} = 4 \text{ kg/kWh}$$