Example 1: Pump of condensate

How is supplied power of a condensate pump? The pump pumps flow of condensate $\dot{m}_{k}=100 \cdot 10^{3} \mathrm{~kg} \cdot \mathrm{~h}^{-1}$ from the condenser with pressure $\mathrm{p}_{\mathrm{k}}=4 \mathrm{kPa}$ to the degasser with pressure $p_{d g}=0.16 \mathrm{MPa}$ through two low pressure heaters (LPH). Specific loss energy is done by each LPH $Y_{L L P H}=80 \mathrm{~J}^{\prime} \mathrm{kg}^{-1}$, pipeline and fittings $Y_{L P}=130 \mathrm{~J} \cdot \mathrm{~kg}^{-1}$ and input to the degasser $Y_{\text {LDG }}=90 \mathrm{~J} . \mathrm{kg}^{-1}$. Reserve of specific energy of the pump is considered 20%. Geodetic height of the pump is input $z_{i g}=-3 \mathrm{~m}$ and output $\mathrm{z}_{\mathrm{og}}=25 \mathrm{~m}$. Pump efficiency is $\eta_{\mathrm{p}}=0.74$.

Solution:

Temperature and density of condensate at the dryness line are $t_{k}=28.5^{\circ} \mathrm{C}$ and $\rho=10^{3} \mathrm{~kg} . \mathrm{m}^{-3}$ for pressure of condenser $\mathrm{p}_{\mathrm{k}}=4 \mathrm{kPa}$.

Specific energy of the pump device:

$$
\begin{aligned}
& Y_{a}=g \cdot\left(z_{i g}+z_{o g}\right)+Y_{L P}+Y_{L D G}+2 \cdot Y_{L L P H}+\frac{p_{d g}-p_{k}}{\rho} \\
&=9.81 \cdot(-3+25)+130+90+2 \cdot 80+\frac{(1.6-0.04) \cdot 10^{5}}{10^{3}}=751.82 \mathrm{~J} \cdot \mathrm{~kg}^{-1}
\end{aligned}
$$

Specific energy of the condensate pump with considered reserve:

$$
Y=1.2 \cdot Y_{a}=1.2 \cdot 751.82=902.2 \mathrm{~J} \cdot \mathrm{~kg}^{-1}
$$

Condensate flow:

$$
Q=\frac{\dot{m}_{k}}{3600 \cdot \rho}=\frac{100 \cdot 10^{3}}{3600 \cdot 10^{3}}=0.028 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}
$$

Supplied power of the condensate pump:

$$
P_{S}=Q \cdot Y \cdot \rho \cdot \frac{1}{\eta_{p}}=0.028 \cdot 902.2 \cdot 10^{3} \cdot \frac{1}{0.74}=34.14 \cdot 10^{3} \mathrm{~W}
$$

Example 2: Pump of feed water

How is supplied power of a feed water pump? The pump pumps flow of feed water $\dot{m}_{f w}=150 \cdot 10^{3} \mathrm{~kg} \cdot \mathrm{~h}^{-1}$ from the degasser with pressure $\mathrm{p}_{\mathrm{dg}}=0.16 \mathrm{MPa}$ to the boiler with pressure $\mathrm{p}_{\mathrm{b}}=9.3 \mathrm{MPa}$ through high pressure regenerative heater (HPH). Reserve of feed water flow is considered 20% and reserve of specific energy of the pump is considered 25%. Specific loss energy is done by HPH $Y_{\text {LHPH }}=90 \mathrm{~J} . \mathrm{kg}^{-1}$, pipeline and fittings $Y_{\text {LP }}=120 \mathrm{~J} . \mathrm{kg}^{-1}$ and input to the boiler $Y_{L B}=140 \mathrm{~J} . \mathrm{kg}^{-1}$. Geodetic height of the pump is input $z_{i g}=-17 \mathrm{~m}$ and output $z_{o g}=27 \mathrm{~m}$. Pump efficiency is $\eta_{p}=0.76$. Temperature of feed water is $t_{f w}=190^{\circ} \mathrm{C}$.

Solution:

Temperature differences of feed water are large and then water density is not considered constant in pipeline route from the degasser to the boiler.

Degasser temperature and density are $t_{d g}=113^{\circ} \mathrm{C}$ and $\rho_{d g}=949 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ for water with pressure $\mathrm{p}_{\mathrm{dg}}=0.16 \mathrm{MPa}$ at dryness line. (The density is the reciprocal of the specific volume.)

Large temperature difference of pumped water is possible simplified replace to average temperature (of temperature at the degasser and temperature at the boiler). Boiler temperature is $t_{b}=305^{\circ} \mathrm{C}$ for boiler pressure $\mathrm{p}_{\mathrm{b}}=9.3 \mathrm{MPa}$.

$$
t_{A V G}=\frac{t_{b}+t_{H P H}}{2}=\frac{305+113}{2}=209^{\circ} \mathrm{C}
$$

Average density of feed water is $\rho_{\mathrm{AVG}}=853 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ for this average temperature.

Determination of specific energy of pump device is suitable of pressure difference at input and output of the pump.

Output pressure of the pump:

$$
\begin{aligned}
p_{o}=p_{b}+\rho_{A V G} \cdot & \left(g \cdot z_{o g}+Y_{L b}+Y_{L H P H}+Y_{L P}\right)=93 \cdot 10^{5}+853 \cdot(9.81 \cdot 27+140+90+120) \\
& =98.245 \cdot 10^{5} \mathrm{~Pa}
\end{aligned}
$$

Input pressure of the pump:

$$
p_{i}=p_{d g}-\rho_{d g} \cdot z_{i g} \cdot g=1.6 \cdot 10^{5}-949 \cdot(-17) \cdot 9.81=3.183 \cdot 10^{5} \mathrm{~Pa}
$$

Pressure difference of the pump:

$$
\Delta p=p_{v}-p_{s}=98.245 \cdot 10^{5}-3.183 \cdot 10^{5}=95.062 \cdot 10^{5} \mathrm{~Pa}
$$

Specific energy of the pump device:

$$
Y_{a}=\frac{\Delta p}{\rho_{d g}}=\frac{95.062 \cdot 10^{5}}{949}=10017.1 \mathrm{~J} \cdot \mathrm{~kg}^{-1}
$$

Specific energy of the feed water pump with reserve 25% :

$$
Y=1.25 \cdot Y_{a}=1.25 \cdot 10017.1=12251.4 \mathrm{~J} \cdot \mathrm{~kg}^{-1}
$$

Volume flow rate of feed water with reserve 20 \% through the pump:

$$
Q=\frac{1.2 \cdot \dot{m}_{f w}}{3600 \cdot \rho_{d g}}=\frac{1.2 \cdot 150 \cdot 10^{3}}{3600 \cdot 949}=0.0525 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}
$$

Supplied power of the feed water pump:

$$
P=Q \cdot Y \cdot \rho_{d g} \cdot \frac{1}{\eta_{p}}=0.0525 \cdot 12251.4 \cdot 949 \cdot \frac{1}{0.76}=820.85 \cdot 10^{3} \mathrm{~W}
$$

Example 3: Pump of cooling water

How is supplied power of a cooling water pump? The pump pumps water to thermal turbine condenser with allowed warming $\Delta t_{w}=8^{\circ} \mathrm{C}$ of cooling water. Enthalpy of condensed steam is $h_{k}=2320 \mathrm{~kJ} . \mathrm{kg}^{-1}$ and mass flow of condensed steam is $\dot{m}_{k}=10^{5} \mathrm{~kg} \cdot \mathrm{~h}^{-1}$. Pressure at condenser is $p_{k}=4 \mathrm{kPa}$. Pump station with water reservoir is placed 500 m from the condenser. Cooling water is pumped by pipeline with diameter 1 m (friction factor $\lambda=0.03$). Geodetic height of the pump is $z_{g}=5 \mathrm{~m}$ and pump efficiency is $\eta_{p}=0.8$. Losses of condenser flow are considered $Y_{L K}=120 \mathrm{~J} . \mathrm{kg}^{-1}$. Losses of pipeline flow are needed calculate.

Solution:

Cooling water flow is done of condenser energy balance. Temperature and density are $t_{k}=28.5^{\circ} \mathrm{C}$ and $\rho=10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ for pressure $\mathrm{p}_{\mathrm{k}}=4 \mathrm{kPa}$ at dryness line. (The density is the reciprocal of the specific volume.) Allowed warming of cooling water: $\Delta t_{w}=8^{\circ} \mathrm{C}=\mathrm{t}_{2 \mathrm{w}}-\mathrm{t}_{1 \mathrm{w}}$.

$$
\begin{gathered}
\dot{m}_{w} \cdot c_{w} \cdot \Delta t_{w}=\dot{m}_{k} \cdot\left(h_{k}-c_{w} \cdot t_{k}\right) \\
\dot{m}_{w}=\frac{\dot{m}_{k} \cdot\left(h_{k}-c_{w} \cdot t_{k}\right)}{c_{w} \cdot \Delta t_{w}}=\frac{10^{5} \cdot(2320-4.18 \cdot 28.5)}{4.18 \cdot 8}=65.8 \cdot 10^{5} \mathrm{~kg} \cdot \mathrm{~h}^{-1}
\end{gathered}
$$

Volume flow rate of cooling water:

$$
Q_{w}=\frac{\dot{m}_{w}}{3600 \cdot \rho}=\frac{65.8 \cdot 10^{5}}{3600 \cdot 10^{3}}=1.83 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}
$$

Speed of cooling water flow:

$$
v_{w}=\frac{Q_{w}}{S}=\frac{4 \cdot Q_{w}}{\pi \cdot D^{2}}=\frac{4 \cdot 1.83}{\pi \cdot 1^{2}}=2.33 \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

Specific energy loss of loop pipeline with length $\mathrm{I}=2 \times 500=1000 \mathrm{~m}$:

$$
Y_{L P}=\lambda \cdot \frac{l}{D} \cdot \frac{v_{w}^{2}}{2}=0.03 \cdot \frac{1000}{1} \cdot \frac{2.33^{2}}{2}=81.4 \mathrm{~J} \cdot \mathrm{~kg}^{-1}
$$

Specific energy of the cooling water pump:

$$
Y=Y_{a}=g \cdot z_{g}+Y_{L P}+Y_{L K}=9.81 \cdot 5+81.4+120=250.45 \mathrm{~J} \cdot \mathrm{~kg}^{-1}
$$

Supplied power of the cooling water pump:

$$
P=Q_{w} \cdot Y \cdot \rho \cdot \frac{1}{\eta_{p}}=250.45 \cdot 1.83 \cdot 10^{3} \cdot \frac{1}{0.8}=572.9 \cdot 10^{3} \mathrm{~W}
$$

