

Hydroelectric Power Plants

Hydro Power Generation

- Use of potential (location, pressure) and partly kinetics energy of water flow
- Use of hydroenergetic potential of water flows has some advantages when compared to other power sources:
 - Renewable and clean source of energy
 - Use of own resources (independency on other counties)
 - Low investments and operating costs
 - Low failure rate, long life-time and high number of operating hours

Classification

- With respect to the installed power
 - smal with installed power up to 10 MW
 - medium with installed power from 10 MW to 200 MW
 - large with installed power more than 200 MW
- With respect to the method of needed high creation
 - run-of-the-river the water head is created by a weir on river
 - derivative artificial channel or pipe
 - reservoir head is created by a dam
 - pump-storage pump water over upper reservoir
 - tidal sea ebb and flow
- According to availability of water head
 - low head up to 20 m
 - medium head from 20 m to 100 m
 - high head more than 100 m

Hydroelectric potential energy

• Can be estimated according to the formula

$$P = Q\rho g H$$

where P is power (W), Q is water flow (m^3/s) , ρ is the specific weight of water, H is hydraulic head (m)

• The real potential energy is smaller and for preliminary estimation can be determined as:

$$P = k_T Q H$$

where $k_{\rm T}$ is a multiplicative factor, $k_{\rm T}$ =8 for low pressure turbines of larger dimensions, $k_{\rm T}$ =7 for low pressure turbines of small dimensions, $k_{\rm T}$ =6,5 for low pressure unregulated turbines of micro sources

Hydroelectric potential energy

Total hydroelectric potential

• Generated electric power

 $P_{s} = Qg\rho H\eta_{T}\eta_{P} \eta_{G}$ where η_{T} is turbine efficiency (0,6-0,9), η_{P} is efficiency of torque transfer to the generator shaft (0,94-0,97) and η_{G} is generator efficiency (0,95-0,97 for MW powers)

Hydro turbines speed

- Operating speed of different hydro turbines with various parameters are in the range from 53 to 1500 rpm
- Estimation of nominal turbine speed:

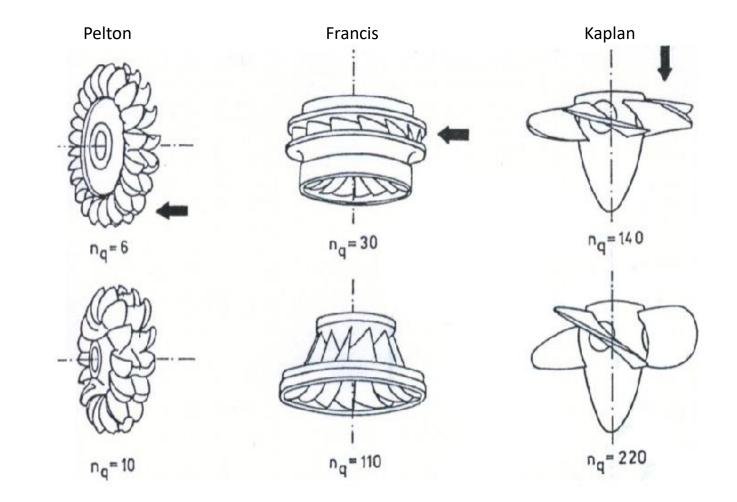
$$n = 1,166 \ \frac{n_s H^4 \sqrt{H}}{\sqrt{P_T}}$$

where *n* is the nominal speed of a turbine (rpm), n_s is the specific speed of a turbine, *H* is head (m), P_T is power on the shaft of turbine (kW).

Specific speed of hydro turbine

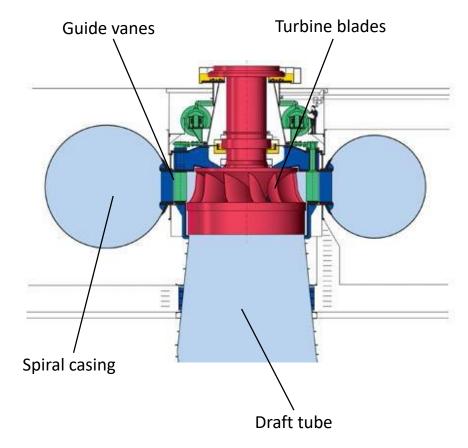
- The specific speed of a turbine is the speed of a geometrically similar turbine (model) so that at the head of 1 m a turbine produces the power of 1 kW
- From geometrical similarity the specific speed can be formulated as

$$n_s = \frac{n}{H^{\frac{5}{4}}} \sqrt{P}$$

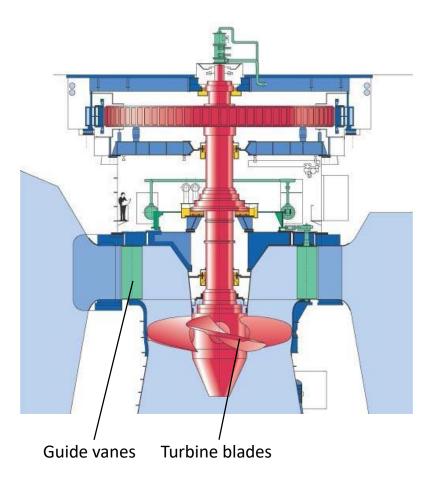

where *n* is turbine speed, *P* is turbine power and *H* is hydraulic head.

Specific speeds of turbines	
Type of turbine	Usual range of n _s (1/min)
Pelton	4 - 32
Banki	70 - 150
Francis	50 - 450
Kaplan	300 - 1000

Power Engineering II

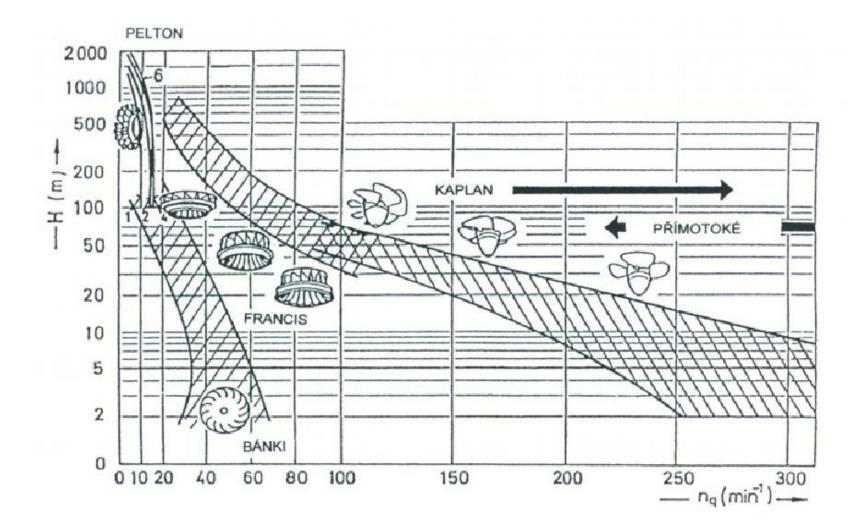

Types of hydro turbine

Francis turbine

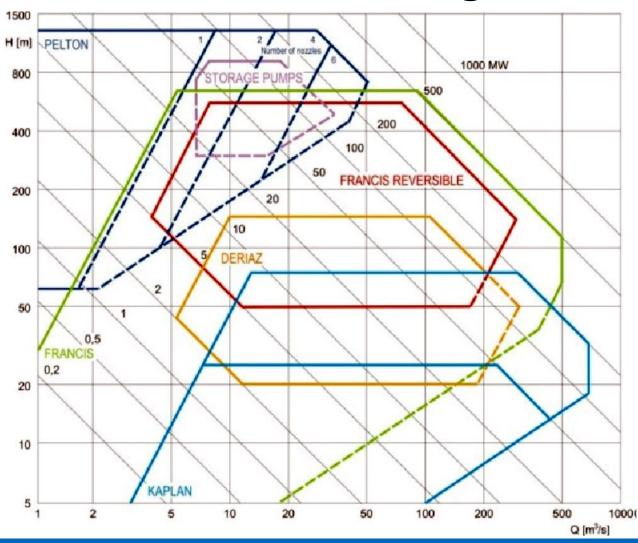

- Reaction turbine
- Water is directed to blades by guide vanes
- The water outlet is a draft tube with conical shape that creates lower pressure (vacuum)

Kaplan turbine

- Axial reaction turbine with lower number of blades
- Power can be controlled by rotation of blades and guide vanes
- Most often used for large water flows and small hydraulic heads

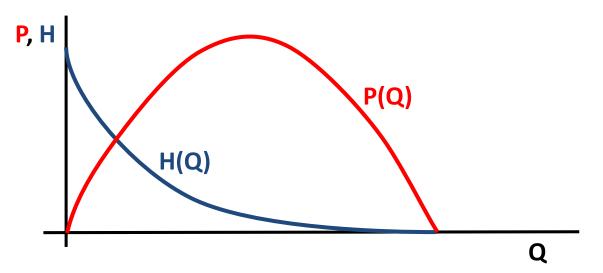

Pelton turbine

- Impulse turbine, the water from nozzle tangentially enters turbine blades
- Turbine power can be controlled by change of nozzles cross section
- A fast drop of power can be realized by deflection of water beam.


Regions of operation of hydro turbines

Power Engineering II

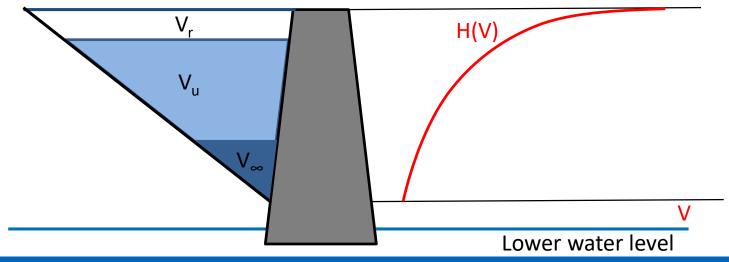
Regions of operation of hydro turbines – Q/H diagram



Hydroelectric power plants

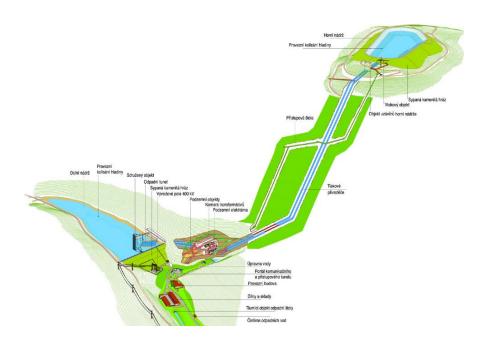
ČVUT CESKÉ VYSOKÉ UČENÍ TECHNICKÉ

Run-of-the-river hydro power plants


- Small or no water storage is provided
- Energy generation mainly for the base load
- For low heads, the head depends on water flow, for large amounts of water (high flows) the low level of water can be equalized with higher level
- Power increases with water flow at first, then after the maximum is reached, it declines to zero value

ČVUT

Reservoir (Dam) hydro power plants


- Typically a large hydropower system, uses a dam to store river water in a reservoir (artificial or natural)
- Energy generation mainly for peak or intermediate load (ability of wide power control)
- The reservoir has to provide energy accumulation for some time
- The volume of reservoir is split into three parts: V_{∞} volume of permanent retention, V_u useable volume and V_r protective volume

Pump-storage hydro power plants

- Three vertically arranged machines: turbine-motor-pump or two vertically arranged machines with reversal turbine (turbine/pump) – nowadays more frequent configuration
- Mainly for the load diagram balancing, fast synchronization to grid and increase in power, efficiency 60-70%

